
TOP 60
CUSTOM SOLUTIONS

 BUILT ON MICROSOFT SHAREPOINT SERVER 2010

YAROSLAV PENTSARSKYY

Opinions expressed in this books are of the author only and do not reflect opinions of
product vendors, or companies the author worked/ works for. Information in this book
is distributed on an “as-is” basic, without warranty. Although every effort has been
made in the preparation of this work, neither the author nor publisher or any other party
affiliated with the the production of this book shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

This book is an independent publication and is not affiliated with, nor has it been
authorized, sponsored, or otherwise approved by Microsoft Corporation.

Microsoft, SharePoint ®, and Windows ® are trademarks of the Microsoft group of companies

Cover images used for this book are taken from from nasa.com and istock photo.com.

Cover Page Artwork by: Luis Ponce

Copyright © 2010 Yaroslav Pentsarskyy

All rights reserved.

ISBN: 145287736X

ISBN-13: 9781452877365

Library of Congress Control Number: 2010907231

Introduction

Many of you are already familiar with functionality and features
available in past versions of SharePoint. However, the new version of
SharePoint has many great improvements and new features to offer.
As with every technology, many features are backwards compatible,
and you can continue building solutions as you do now, as most of
those are still going to be understood in the new version. The best
approach, however, is to get complete coverage of what’s available
for you in the new release, especially components that you had to
build from the grounds up before. Every time a new technology such
as SharePoint is released I see new books and materials available in
the market. Most of the time, books are released few weeks before
the technology reaches the release to manufacturing stage, which
is understood, because many of us have access to the pre-release
version of various tools. The pre-release version of tools usually is almost
complete and usually resembles the release to manufacturing version
… right? I mean what major features could change in next three
months? Well, if you’re like me, you probably know that there are
many things that usually change before the product reaches release
to manufacturing stage. In fact, the time span from beta to release to
manufacturing is when the product team hopes to fix all of the issues
reported by the early adopters. This book has been in its initial stage
since the latest beta of SharePoint to early adopters. After new version
of SharePoint was released, all of the examples you will see in chapters
here were reviewed for changes to their original scenarios. I do hope
you will find this book resourceful and complete with examples that
closely resemble your scenarios and actually work from the first time.

Whom this book is for

This book is intended for two types of audiences:

A .NET developer with little experience in SharePoint looking to start
developing using the latest release of SharePoint.

A SharePoint developer gearing up for the new release of the
product.

Whoever from the two above you might be, here are some of the
assumptions I made about why you would buy this book. If I’m going
to buy a book that will tell me everything that I can read by pressing
F1 in Visual Studio, or everything I can ready by going to the “What’s
new” section of the product page, I probably wouldn’t buy it. Also, I
don’t want to buy a book to learn abstract scenarios that I will never
work with. I assume you’re thinking the same.

Here are the three objectives that this book is trying to achieve:

Get you familiar with technical and business scenarios rather than
features of the product.

When you’re in the middle of reading vague requirements on what
you actually need to implement, it’s hard to see how all of those
great new features you’re reading about will fit together to solve your
problem on time. This book navigates through business and technical
scenarios and, hopefully, it will get you to the correct solution right
from the table of contents.

Give you a real code with all of the steps you need to do to run it.

We’ve all been there. You have a technical problem, you find the
solution someone has posted online, you put it together … - it doesn’t
work. The last thing you want to see is a sample that’s broken, and
then few hours later find that post author forgot to include one step
that you never thought you would be required to do. This book
comes with references to downloadable solution files that have been
compiled and tested.

Get you thinking about what else you can do with features described
and scenarios used.

Association is a powerful thing. You can read about a feature or a
sample that is not related to your case in any way, yet sometimes
you will get enough information to get started on your own solution.
Through-out each sample you will find pointers that will get you
thinking how else you could use the feature discussed.

With this set of objectives, I really do hope you will find this book
everything you ever wanted a developer book to be and nothing less,
nothing more. I understand you may not be as excited reading it, as
I was writing it; after all, it’s just a manual organized a bit differently to
help you get things done easily.

With that, I hope you have fun reading this book and if you want
to give me your feedback – visit my blog and drop me a note:
www.sharemuch.com.

About the Author

Yaroslav Pentsarskyy has been architecting and implementing
SharePoint solutions since its 2003 release. Yaroslav has extensive .Net
and SharePoint development experience working with medium-sized
businesses, non-profits, and government organizations.

As a recipient of the Microsoft Most Valuable Professional (MVP) 2009
Award, Yaroslav is also a developer audience leader for VanSPUG
(Vancouver SharePoint Usergroup) and actively contributes to local
and not-so-local technical communities by presenting at local events
and sharing his findings in his almost-daily blog: www.sharemuch.com.

Outside of work, Yaroslav enjoys travelling and maintains a growing
“places-to-visit” list.

Acknowledgements

Throughout my career in software development I have been involved
with variety of organizations. I want to give a special thanks to my
dynamic team at Habanero Consulting who actively supports and
contributes to local and worldwide communities, and especially local
SharePoint community here in Vancouver. A lot of my knowledge
comes from interacting and exchanging ideas with my team.

My thanks also extend to local and worldwide usergroup leaders
with whom I have been involved with over the last few years. Your
involvement in the community helps people tremendously, please keep
doing what you’re doing.

I also would like to mention and thank to all of the bloggers out there
who share their ideas online. It takes a lot of effort and dedication to
post all of those tips and innovations on your blogs almost every day.
Without those posts we wouldn’t have such a great community and so
many innovative ideas and solutions.

Book source code

This book comes with a source code for each chapter. As you go
through the book – you will see many examples and source code. The
source code in the book is for you to follow the flow of the logic that
is referenced, not to type it out into your Visual Studio. If you would
like to see actual example in action, download the corresponding
chapter source code that is ready for you to compile and use. The
source code samples assume you’re running the system with:

■■ Microsoft SharePoint Server 2010 installed.

■■ Visual Studio 2010 Professional or higher installed.

■■ PowerShell enabled.

■■ Sufficient account permissions to access SharePoint 2010 Central
Administration and Service Applications.

All source code can be downloaded from the ‘Downloads’ section at
www.sharemuch.com. Below is the source code index for each sample:

Chapter 1

Solution Packaging
Custom Solution Deployment Script
Referenced Assemblies in Your SharePoint Solution

﻿xvi ﻿ xvii

Chapter 7
Creating Basic SharePoint Ribbon Controls
Creating a Fly out Anchor on Your Ribbon
What if your Ribbon Java Script is Too Large for One File
Working with Ribbon Groups and Tabs
Creating Site Level Ribbon Tabs
Determining the State of Ribbon Tabs and Hiding Ribbon
Opening Modal Windows upon Ribbon Control Clicked

Chapter 9
Defining Site Templates and Driving Site Content
Provisioning Page Content to Your Pages Programmatically
Provisioning Other Web Parts and Views on to the Page
Provisioning Several Pages with One Module
Privisioning Web Parts directly to page layouts
Rendering Additional Page Specific Metadata during Page Edit
Programmatically Hide SharePoint Web from default Navigation
Limiting Allowed SharePoint Page Layouts on a Desired Web
Setting Automatic Page Title for SharePoint Default Pages

Chapter 10
Limiting the List of Available Page Layouts with an Application
Page
Displaying SharePoint “Processing” Page during Your Long Running
Operations

Chapter 11
Extending Visual Studio Server Explorer Window with New Nodes
Creating Visual Studio Project and Item Templates

Chapter 2
List Item Validation
List Item Security
Excluding List Items from Search Crawl
Creating Custom Permissions Levels
Enforce SharePoint List Relationship Behavior
Working with SharePoint List Event Receivers
Aggregating Contents of Lists, Queries, and Rollups

Chapter 3
Creating Custom List Item Detail Forms
Field Level Security in Your SharePoint List Forms
Manage Behavior of SharePoint 2010 Composite Fields
Defining List View Look and Feel in Your Custom List Schema
Adding Web Parts to Item Detail View Form

Chapter 4
Creating External Content Types with Visual Studio
Exporting and Importing Your BDC Model
Importing BDC Models into Visual Studio
Provisioning SharePoint External List Schema Programmatically
Executing Queries on External Lists

Chapter 5
Process Automation and Scheduling Long Running Operations

Chapter 6
Creating Your Own User Profile Properties
Creating SharePoint User Profiles Programmatically
Add New Terms to SharePoint User Profile Properties
Retrieving Taxonomy Types Properties from SharePoint User Profile
User Profile Integration with Out-of-the-box Features: Update
MySite Status Message Programmatically
Programmatically Enable Rating on SharePoint Lists and Libraries
Adding Item Rating Control to Your Custom List Forms
Tagging Content Programmatically with Managed Metadata
Service

Table of Contents

Introduction. iii

Whom this book is for. v

About the Author. vii

Acknowledgements. ix

Book source code. xi

Chapter 1 Setting Up for Success: Visual Studio 2010 Solution Structure. 1
and Deployment Scripts

Solution Packaging. 7

Custom Solution Deployment Script. 9

Referenced Assemblies in Your SharePoint Solution. 18

Debugging Your SharePoint Applications . 23

Chapter 2 Lists and Libraries: List Rollups, Security,. 27
and Integration with the Rest of SharePoint 2010 Components

List Item Validation. xx

List Item Security. xx

Excluding List Items from Search Crawl. xx

Creating Custom Permissions Levels. xx

Enforce SharePoint List Relationship Behavior . xx

Working with SharePoint List Event Receivers. xx

Aggregating Contents of Lists, Queries, and Rollups. xx

﻿xx ﻿ xxi

Chapter 7 Creating SharePoint 2010 Ribbon Components. xx
and Managing Existing Ribbon Elements

Creating Basic SharePoint Ribbon Controls. xx

Creating a Fly Out Anchor on Your Ribbon. xx

What If Your Ribbon Java Script Is Too Large for One File xx

Working with Ribbon Groups and Tabs. xx

Creating Site Level Ribbon Tabs . xx

Determining the State of Ribbon Tabs and Hiding Ribbon. xx

Where is SharePoint Out-of-the-box Ribbon Defined?. xx

Opening Modal Windows upon Ribbon Control Clicked. xx

Chapter 8 Search: Extending Search Components . xx
and Incorporating Search Features in Your Portal

Add Your Own Search Refinement Categories. xx

Adding New Metadata to Your Search Results View. xx

Adding Graphic Representation of Item Rating to Your Search Results. . . xx

Chapter 9 Working with SharePoint 2010 Publishing and Custom Pages. xx
Getting Started with Creating Custom SharePoint Pages. xx

Defining Site Templates and Driving Site Content. xx

Provisioning Page Content to Your Pages Programmatically xx

Provisioning Other Web Parts and Views onto the Page. xx

Provisioning Several Pages with One Module . xx

Provisioning Web Parts Directly to Page Layouts. xx

Rendering Additional Page Specific Metadata during Page Edit xx

Using SharePoint Publishing Site Navigation Properties. xx

Programmatically Hide SharePoint Web from Default Navigation. xx

Hide Unused SharePoint Site Templates. xx

Limiting Allowed SharePoint Page Layouts on a Desired Web xx

Setting Automatic Page Title for SharePoint Default Pages. xx

Chapter 10 Adding Custom Logic to Your Site Using Application Pages. xx
Limiting the List of Available Page Layouts with an Application Page. . . . xx

Displaying SharePoint “Processing” Page during. xx
Your Long Running Operations

Chapter 3 Lists and List Items: Changing the Look of Forms xx
and Incorporating Custom Logic into Item Forms

Creating Custom List Item Detail Forms . xx

Field Level Security in Your SharePoint List Forms. xx

Manage Behavior of SharePoint 2010 Composite Fields xx

Dynamically Changing SharePoint 2010 List Form Rendering Templates. . xx

Making Changes to List View and List Item Detail View Using XSL. xx

Defining List View Look and Feel in Your Custom List Schema. xx

Adding Web Parts to Item Detail View Form. xx

Chapter 4 Using External Data with SharePoint 2010 Out-of-the-Box xx
Components and Custom Features

Connecting to SQL Server Data Source. xx

Creating External Content Types with Visual Studio xx

Exporting and Importing Your BDC Model. xx

Importing BDC Models into Visual Studio. xx

Provisioning SharePoint External List Schema Programmatically. xx

Executing Queries on External Lists . xx

SharePoint External List Item Throttling and Limits . xx

Chapter 5 Process Automation and Scheduling Long Running Operations . . . xx

Chapter 6 Metadata, Tags, Rating: Working with and. xx
Extending Social Features of SharePoint 2010

Creating Your Own User Profile Properties . xx

Creating SharePoint User Profiles Programmatically. xx

Add New Terms to SharePoint User Profile Properties xx

Retrieving Taxonomy Types Properties from SharePoint User Profile xx

User Profile Integration with Out-of-the-Box Features:. xx
Update MySite Status Message Programmatically

Getting Started with SharePoint Social Rating Feature. xx

Changing Update Frequency of SharePoint Rating. xx
and Social Data Synchronization

Programmatically Enable Rating on SharePoint Lists and Libraries. xx

Adding Item Rating Control to Your Custom List Forms. xx

Working with Managed Metadata Service and Tagging Features. xx

Tagging Content Programmatically with Managed Metadata Service . 140

﻿xxii

Chapter 11 Extending Visual Studio 2010 to Speed Up . xx
and Standardize Your SharePoint 2010 Projects

Extending Visual Studio Server Explorer Window with New Nodes xx

Creating Visual Studio Project and Item Templates xx

Chapter 1
Setting Up for Success: Visual Studio 2010

 Solution Structure and Deployment Scripts

Getting Visual Studio 2010 solution structure right for your SharePoint
2010 projects is a crucial element for successful solution deployment,
future maintenance, and enhancements a few months from now.
With Visual Studio 2010, you have much better support in terms
of creating solution elements such as modules, event receivers,
and features. With that support, you can create solution elements
almost anywhere and really confuse your sustainment team (even
if it includes you) three months down the road, or confuse other
developers trying to pick up where you left off.

Each SharePoint solution will have few logically separated Visual
Studio projects serving various functions.

For example, if part of your SharePoint solution will deliver content to
a site, the other part will provision Web Parts and lists, and yet another
part will provision workflow— it will be fairly confusing and irrational to
place them all together as the same Visual Studio project.

Instead, it’s best to create a:

■■ Platform project –to handle provisioning of core components; all
the Web Parts and list definitions will go here.

Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 2 Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 3

■■ Layouts *

■■ Folder (project name)

■■ Layouts ASPX page

■■ List definitions

■■ List definition

■■ Lists

■■ List Instance

■■ Web Parts

■■ General Web Part

aaThe rule of the thumb here is that you should keep all of your
solution items hierarchical unless they are generic enough for
other elements to reuse. For example, you see that I have “Page
specific Web Part module” right under pages; this is mainly due to
those custom Web Part modules being used on that page only,
and nowhere else. If you anticipate using your Web Part modules
throughout your site on multiple pages, the modules for such Web
Parts should sit under Web Parts of the root of your SharePoint project
(see General Web Part in my tree).

■■ Content Project Root

■■ Features

■■ Page provisioning feature (s)

■■ Pages

■■ Page module

You will notice that this Visual Studio project is much simpler than
Platform, here we’ll only place content provisioning XML files for your
pages.

Services Project Root
■■ Constants

■■ List constants

■■ Site constants

■■ Web Part constants

■■ Content project – to provision default content to pages when
the site is deployed –after all you don’t want to have a site with
nothing on it when customer receives it.

■■ Services project – to store all of your constant classes as well as
any logic that will interact with non-SharePoint systems such as
reading and writing to your web.config file.

■■ Branding project – to place all of the components that will take
care of your solution branding –items like themes, along with
their CSS files, images, and even any footer and header controls.

Here is a typical solution structure for a Platform project:

Platform Project Root
■■ Features

■■ Master Page provisioning feature

■■ Page layout provisioning feature

■■ Page provisioning feature (s)

■■ General Web Part provisioning feature

■■ Pages

■■ Page Module

■■ Page specific Web Part module

■■ Page specific list instance

■■ Page layouts

■■ Master pages

■■ ControlTemplates *

■■ Project specific custom user control

■■ Template *

■■ 1033

■■ Project site template definition

■■ Site Templates

■■ Project site template

■■ Controls

■■ Custom controls

Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 4 Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 5

Now that we know what goes where, let’s go through a few small
technicalities on how to create all of those projects in Visual
Studio 2010.

We will start by firing up an instance of Visual Studio 2010 and creating
a new SharePoint 2010 project as shown below.

Figure 1-1 Creating SharePoint 2010 project in Visual Studio 2010

Remember, despite all of the .NET 4.0 goodness available in Visual
Studio, we will use .NET 3.5 since this is the framework that SharePoint
2010 uses.

Next, you will be asked to choose whether your solution is a Sandox
Solution or Farm Solution. In this book, we will be deploying all of our
applications as Farm Solutions. You will also be asked about the name of
the site you wish to use for debugging. It is handy to specify the site that
most closely resembles the site template you are creating solutions for—
for example: Team Site, or Publishing Site.

After you picked the site and the type of solution, click Finish and your
SharePoint project will be created. Your Visual Studio Solution Explorer
will contain a single solution with a project in it.

■■ List Helpers

■■ Service query helper

The above structure is for a Visual Studio project that is a type of a
Class Library and not SharePoint project at all. The above project will
produce a DLL with all of the classes you might create as you create
artifacts for your solution, but in its essence, this is just a container for
everything that helps your SharePoint solution but doesn’t necessarily
belong to it. There is one more benefit to keeping those artifacts
separate; when it comes to bug fixes or functionality upgrades, it’s
easier to replace one DLL that keeps all of the supporting functionality
than replacing core Platform DLL.

Branding Project Root
■■ Features

■■ Theme installer

■■ Theme setter

■■ Controls

■■ Optional header control

■■ Optional footer control

■■ Template *

■■ Layouts

■■ 1033

■■ Styles

■■ Themable

■■ Project folder (containing images and style artifacts)

The above project will hold your entire theme related artifacts and
elements. This way if you need to upgrade a few images or maybe a
CSS markup, you can always do it separately without disturbing the
rest of the Platform solution items.

The above four Visual Studio projects are not mandatory, of course,
and if you have really small projects that require no branding or
content provisioning, you would not include those respective Visual
Studio projects.

Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 6 Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 7

After I populate my solution structure with the hierarchy we discussed
earlier, my Solution Explorer will look similar to what is shown below.

Figure 1-2 Platform project solution structure

Now the remaining pieces left are, at least, Services and Branding
project structure, which follow the same principle.

Solution Packaging
You have created your Visual Studio solution structure and are eager
to add components. You can perform manual solution deployment
to your SharePoint 2010 farm using tools in SharePoint 2010 Central
Administration. As an alternative, you can choose to automate your
deployment steps so that every time you do a test deployment—we
all know how often that happens—you don’t have to go through a
series of pages and clicks.

In Visual Studio 2010, you have a great new feature allowing you to
build, package, and deploy your solution with a right click of all of the
three options in Solution Explorer. In most cases, when you’re dealing
with a simple set of tasks, the separation between build and package

NOTE:

One of the few advantages of creating Sandoxed Solution is when
the administrator of the farm deploys your solution; they have a
choice to decide what level of access to give to your application
as well as define a threshold when to disable your solution if it
reaches the limits defined in SharePoint 2010 configuration. Some
types of project components—for example, Web Parts—require
being deployed on a farm, and therefore, cannot be used in a
Sandbox Solution.
The project you created will be your Platform project, not because
it has to be in that sequence.

Next, navigate to your Platform project properties and give a
meaningful name to your assembly and namespace. You can see the
convention that I recommend, below.

■■ Assembly Name: SolutionName.Platform – for Platform project.

■■ Default Namespace: SolutionName.Platform – assuming it’s a
Platform Visual Studio project.

If you remember our Platform project structure, it had number of
folders and modules. There is a difference between a regular Visual
Studio folder and a special mapped folder. A mapped folder is a
folder that is mapped to a specific SharePoint 2010 directory under
the SharePoint Root (aka: [Drive]:\Program Files\Common Files\
Microsoft Shared\Web Server Extensions\14).

To create a mapped folder:

1.	 Right click on the Platform project.

2.	 Select Add.

3.	 Select SharePoint mapped folder.

4.	 Pick the folder you would like to map (TEMPLATE for example).

5.	 Click OK.

Now you will see a new folder in your solution structure. In the Platform
project structure, all of the mapped folders are identified with an
asterisk (*).

Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 8 Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 9

3.	 Scroll down to the very bottom until you see the following
SharePoint targets are loaded.

Listing 1-1

<Import Project=”$(MSBuildExtensionsPath32)\ Microsoft\
VisualStudio\v10.0\ SharePointTools\Microsoft.VisualStudio.
SharePoint.targets” />

4.	 Right below is where you define your own build commands. To
package, you add the contents below.

Listing 1-2

<PropertyGroup>

<BuildDependsOn>$(BuildDependsOn);CreatePackage</
BuildDependsOn>

</PropertyGroup>

This means that whatever build targets are already defined, add
CreatePackage to the list. If you’re thinking about automating the
development processes in your team, this is a great place to start. You
can add as many of your own or existing targets here to complement
a standard build sequence. Here, for example, is how you can copy
the output WSP file from the BIN folder, where it usually gets generated
to the main solution directory, and where your custom deployment
scripts can pick it up.

Listing 1-3

<TargetName=”CopyPackage”>

	 <ExecWorkingDirectory=”$(PackagePath)”

		 Command=”copy$(TargetDir)$(TargetName).wsp

		 $(SolutionDir)$(TargetName).	
		 wsp”ContinueOnError=”false”/>

</Target>

<PropertyGroup>

<BuildDependsOn>$(BuildDependsOn);CreatePackage;CopyPackage</
BuildDependsOn>

</PropertyGroup>

and deploy is OK; In more complex scenarios, you may want to build
and package all at once or maybe even copy your resulting solution
files (aka WSP) to a destination folder where your automated scripts
pick it up and deploy. If the latter is the scenario that sounds like
you, we’re onto our first custom mini-solution: setting Visual Studio to
package on build.

Each SharePoint project you create will come with a project definition
file that will outline solution variables such as solution name and
whether you’re in configuration or release mode. You can modify
the project configuration file on each of your SharePoint projects
(Platform, Branding, etc) to perform your own build tasks when the
solution is built in our case package task.

Build tasks are a set of commands you want to execute during
build, and most of them are pretty standard. In fact, Visual Studio
2010 comes with a great set of SharePoint tasks, which in past many
development teams created manually. You can find a set of tasks
here, by opening the file in Notepad: [Drive]:\Program Files (x86)\
MSBuild\ Microsoft\ VisualStudio\ v10.0\SharePointTools\ Microsoft.
VisualStudio.SharePoint.targets.

NOTE:

On a topic of simple code editors I prefer Notepad ++ which is a
free for download editor that also numbers your lines and colors your
code keywords in all sorts of programming languages making it very
easy to navigate through XML files and other code.

In this case, we’re after a CreatePackage command that creates
solution packages (aka WSP files). As you see, the CreatePackage is
already defined in Microsoft.VisualStudio.SharePoint.targets. Here is
how we add it as a build task.

To change the standard Visual Studio build order execution, we’ll
follow the steps below.

1.	 In your Visual Studio Solution Explorer, right click on the Platform
project, and in the menu select Unload Project.

2.	 Right click on the project again and select Edit Platform.csproj.
This will load the solution definition file in an XML compatible editor.

Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 10 Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 11

Next, we’ll ensure the SQL server your SharePoint install is using has
proper permissions set up for the account Visual Studio is using, here
are the steps:

1.	 Open your SQL Server Management Studio with the user
account that is able to manage SharePoint databases.

2.	 Expand Object Explorer and drill down to Security -> Logins.

3.	 Locate the myadmin_account.

4.	 Right click on the username and select Properties.

5.	 Open User Mappings tab.

6.	 Ensure all three databases below have myadmin_account
added as a DBOWNER:

■■ SharePoint_Config

■■ SharePoint_AdminContent_[guid]

■■ SharePoint Site Content DB

Figure 1-3 Setting up your install account as a DBOWNER

NOTE:

Ensure the package names for each Visual Studio SharePoint project
(Platform, Branding, Content) follow below convention: [solution
name].[project name];
Example: ‘Chapter1.Platform’. This will make sure the solution files (WSP)
are copied successfully to the root folder of your Visual Studio solution.

Once done, you can save your Visual Studio project definition file and
reload the project again by right clicking on the Platform and choosing
Reload Project.

Custom Solution Deployment Script
You’ve created your project structure and you followed all the rules, what
else there is to the successful SharePoint custom solution deployment?
The deployment comes next. I’m sure you have heard a lot about how
easy it is to deploy Visual Studio projects with built-in deployment tools.

Depending on how you have set up your SharePoint and Visual
Studio, you may run into an issue with deploying your solution right
from Visual Studio. One of the most common issues you may get is the
error message when trying to deploy your newly created Visual Studio
solution using the Deploy command from within Visual Studio.

Error occurred in deployment step ‘Recycle IIS Application Pool’:
The local SharePoint server is not available. Check that the server is
running and connected to the SharePoint farm

Or this:

Error occurred in deployment step ‘Recycle IIS Application Pool’:
Cannot connect to the SharePoint site: http://localhost/. Make sure
that this is a valid URL and the SharePoint site is running on the local
computer. If you moved this project to a new computer or if the URL
of the SharePoint site has changed since you created the project,
update the Site URL property of the project

Visual Studio uses the following process to deploy your solution:
vssphost4.exe.

Open your task manager and find the process in the list; take a note of the User
Name under which this process is running—let’s say it’s myadmin_account.

Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 12 Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 13

SolutionStructure.xml is the file that defines variables that will be
used in PS1 script, such as Web Application names, features to be
activated, and so on. Let’s take a look at the contents.

Listing 1-5

<SetupWebAppUrl=”http://localhost”>

<Solutions>

	� <SolutionWebApplication=”True”>MyProject.Platform.wsp</
Solution>

	� <SolutionWebApplication=”False”>MyProject.Branding.	
wsp</Solution>

</Solutions>

<SiteCollectionName=”MyNewSite”

Url=”/sites/MyNewSite”OwnerAlias=”administrator”

Template=”STS#0”>

	 <Features>

		 <Feature>MyCustomFeature</Feature>

	 </Features>

	 <SiteName=”MySite” Url=”MySite” Template=”STS#0”>

		 <Feature>FeatureName</Feature>

	 </Site>

	 <SiteName=”MySite1” Url=”MySite1” Template=”STS#0”>

	 </Site>

</SiteCollection>

</Setup>

Here are the variables we are using in the script.

1.	 WebAppUrl –is the Web Application URL. If you’re deploying to
a different Web Application than a root site, this is where you
specify that exact URL.

2.	 Solution –is one of the solutions that will be deployed into the
solution gallery in SharePoint Central Administration. You can list
as many as you require. Solutions that require deployment on a

After the changes to the SQL login have been applied, close and
launch your Visual Studio. This will ensure the deployment service is
recycled, and consequently fix the deployment problem. If you’re still
seeing the same issue after restarting your Visual Studio, open your
task manager and end the vssphost4.exe process manually; restart
Visual Studio.

Although manual, the deployment method from withinVisual Studio
is quick and easy—there are more deployment scenarios requiring
better approaches. Chances are that your client, and even your
QA environment, will not have Visual Studio installed on the server.
In order to have a solid deployment strategy and not a hundred
pages of deployment documents, it really pays to create install
and deployment script. With PowerShell available (which I assume
you have by default or will install shortly while finishing reading this
sentence) and SharePoint 2010 support of PowerShell commands,
the deployment experience is more flexible and robust. After
performing several SharePoint 2010 deployments, below is my
generic script that will read your configuration and deployment
preferences from an XML file to drive the deployment.

If you already have solution files (WSP) in your script directory, you can
execute deployment commands with that assumption. The deployment
script will consist of three files, plus any WSP files from your solution:

1.	 SetupSite.bat.

2.	 SolutionStructure.xml.

3.	 SetupSite.ps1.

We’ll start with SetupSite.bat, as this is file’s sole purpose is to call
PowerShell script (PS1), which actually performs operations. Here is
what the file looks like.

Listing 1-4

@echo off

powershell -Command “& {Set-ExecutionPolicy bypass}” -NoExit

powershell -Command “.\SetupSite.ps1” -NoExit

pause

Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 14 Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 15

$SiteUrl=$WebAppUrl+$SiteCollectionUrl

#check to ensure Microsoft.SharePoint.PowerShell is loaded

$snapin=Get-PSSnapin | Where-Object{$_.Name-eq ‘Microsoft.
SharePoint.Powershell’}

if($snapin –eq $null){

Write-Host “Loading SharePoint PowerShell Snapin”

Add-PSSnapin “Microsoft.SharePoint.Powershell”

}

#delete any existing site found at target URL

$targetUrl=Get-SPSite | Where-Object{$_.Url –eq $SiteUrl}

if($targetUrl.Url.Length –gt 0){

Write-Host “Deleting existing site at “ $SiteUrl

Remove-SPSite-Identity $SiteUrl -Confirm:$false

}

#add the solution package

$solutions=$SiteStructure.Setup.Solutions

foreach($solutionInstance in $solutions.ChildNodes)

{

if($solutions.Solution.Count –gt 0)

{

$targetSolution=Get-SPSolution | Where-Object{$_.Name –eq
$solutionInstance.InnerText}

if($targetSolution.Deployed –eq “True”)

{

Write-Host “Uninstalling existing solution package: “
$targetSolution.Name

$WebAppInstallTarget=$solutionInstance.Attributes.Item(0).
Value

if($WebAppInstallTarget –eq “True”)

{

Web Application level specified in #1 will have WebApplication
parameters set to true; otherwise, your solution will be deployed
to all Web Applications.

3.	 SiteCollection –is a pretty descriptive element denoting a new
site collection. Here, we define a site collection administrator
user name as OwnerAlias and Template used for site collection
root. If you have a custom template provisioned as a part of your
solution, this is where you’d specify its respective ID. For example,
STS#0 is a template ID of a team site.

4.	 Feature –is one or more features that you’d like to see activated
at the site collection. Those, for example, are features that will
provision your content types.

5.	 Site –is one or more sites that will be created under the site
collection. Unless your site is a test site that has nothing but site
collection with many pages underneath it, you will have at least
few sub-sites.

6.	 Site -> Feature –is the feature that will be activated under the
sub-site. When you provision a generic site template—in this case
we use team site (STS)—you are likely to provision additional
pages under that site. Since your pages will be contained in
Modules, you will need a feature that will provision them to the
proper destination sub-site and not to all of the sites. For that
same purpose, you will dedicate a page provisioning feature
and activate it under the site where pages should be delivered.

Now that we’ve looked at the XML file that holds configuration settings,
let’s take a look at the script that reads all of those settings and makes
proper provisions.

Listing 1-6

Write-Host

#define variables for script

[xml]$SiteStructure=get-content SolutionStructure.xml

$WebAppUrl=$SiteStructure.Setup.Attributes.Item(0).Value

$SiteCollectionUrl=$SiteStructure.Setup.SiteCollection.
Attributes.Item(1).Value

Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 16 Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 17

}

#creating site structure

$SiteCollectionName=$SiteStructure.Setup.SiteCollection.
Attributes.Item(0).Value;

$SiteCollectionOwner=$SiteStructure.Setup.SiteCollection.
Attributes.Item(2).Value;

$SiteCollectionTemplate=$SiteStructure.Setup.SiteCollection.
Attributes.Item(3).Value;

Write-Host “Creating new site collection at” $SiteUrl

$NewSite=New-SPSite –URL $WebAppUrl $SiteCollectionUrl

-OwnerAlias $SiteCollectionOwner –Template
$SiteCollectionTemplate

-Name $SiteCollectionName

$RootWeb=$NewSite.RootWeb

$features=$SiteStructure.Setup.SiteCollection.Features

if($features.Feature.Length –gt 0)

{

foreach($SiteColFeature in $features.Feature)

{

$ActivatedFeature=Enable-SPFeature $SiteColFeature –url
$RootWeb.Url

Write-Host “Enabled Feature:” $SiteColFeature-
foregroundcolorGreen

}

}

Write-Host “Site collection created successfully”

Write-Host “Title:” $RootWeb.Title –foregroundcolor Green

Write-Host “URL:” $RootWeb.Url –foregroundcolor Green

Write-Host “-------------------------------------”

for($i=1; $i –lt $SiteStructure.Setup.SiteCollection.
ChildNodes.Count; $i++)

{

Uninstall-SPSolution–Identity $targetSolution.Name –
WebApplication $WebAppUrl-Confirm:$false

}

else{Uninstall-SPSolution –Identity $targetSolution.Name-
Confirm:$false}

do

{

$targetSolution=Get-SPSolution | Where-Object{$_.Name –eq
$solutionInstance.InnerText}

} while($targetSolution.JobExists –eq “True”)

Write-Host “Removing existing solution packages”

Remove-SPSolution –Identity $solutionInstance.InnerText
-Confirm:$false

}

Write-Host “Adding solution packages”

Add-SPSolution –LiteralPath $solutionInstance.InnerText

Write-Host “Installing solutions”

$WebAppInstallTarget=$solutionInstance.Attributes.Item(0).
Value

if($WebAppInstallTarget –eq “True”)

{

Install-SPSolution –Identity $solutionInstance.InnerText

–WebApplication $WebAppUrl –GACDeployment -force

}

else{Install-SPSolution –Identity $solutionInstance.InnerText
–GACDeployment -force}

do

{

$targetSolution=Get-SPSolution | Where-Object{$_.Name –eq
$solutionInstance.InnerText}

}while($targetSolution.JobExists –eq “True”)

}

Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 18 Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 19

the catchall scenarios script, but it will work for most of your small
to medium site solution deployments, and definitely reduce your
deployment time from one environment to another.

Referenced Assemblies in Your SharePoint Solution
If you’re developing a SharePoint 2010 solution that works with
third party components or even if it’s your own Service project that
produces a separate DLL, you will have to instruct SharePoint to
deploy those libraries. You may think that just by providing a project
reference in your solution, SharePoint project will take care of your
extra DLLs and use them in WSP it generates; however, there are few
extra steps you need to take to make that happen.

Assuming you are referencing an internal assembly from another
project residing in the same Visual Studio solution, here are the steps
you need to take:

1.	 Create a reference in the SharePoint project that uses your
Service project

■■ Right click on your SharePoint project and select Add a
Reference.

■■ Select Projects tab.

■■ Add a new reference.

2.	 In the Solution Explorer of your SharePoint project locate
Package and expand it.

3.	 Double click on expanded child element of Package.

4.	 Click Advanced from the newly opened window and click Add.

5.	 Here pick the option Add Assembly from Project Output.

6.	 Pick the assembly from the drop down and click OK.

NOTE:

The assembly you will be referencing from your project must be signed
with a strong name key if you’re planning to deploy it to Global
Assembly Cache.

$childsite=$SiteStructure.Setup.SiteCollection.ChildNodes.
Item($i);

$WebName=$childsite.Attributes.Item(0).Value

$WebUrl=$childsite.Attributes.Item(1).Value

$WebTemplate=$childsite.Attributes.Item(2).Value

Write-Host “Creating new web at “ $SiteUrl/$WebUrl

$NewWeb=New-SPWeb $SiteUrl/$WebUrl –Template $WebTemplate –
Addtotopnav –Useparenttopnav –Name $WebName

Write-Host “Web created successfully”

Write-Host “Title: “$NewWeb.Title –foregroundcolor Green

Write-Host”URL: “ $NewWeb.Url –foregroundcolor Green

$features=$SiteStructure.Setup.SiteCollection.ChildNodes.
Item($i)

if($features.Feature.Length –gt 0)

{

foreach($WebFeature in $features.Feature)

{

$ActivatedFeature=Enable-SPFeature $WebFeature –url $NewWeb.
Url

Write-Host”EnabledFeature: “ $WebFeature –foregroundcolor
Green

}

}

Write-Host “-------------------------------------”

}

start-process –filepath iexplore –argumentlist $SiteUrl

The main purpose for dropping this script in front of you is not so you
can practice your typing skills. Rather it is to take a look at some of
the sections in the script and take note of the syntax and how to
access objects and process logic. The next time you need to extend
this PowerShell script to include new scenarios, you will have a better
idea where to start and what to copy where. This is definitely not

Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 20 Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 21

instruction for your administrators on all of those settings or you can
programmatically provision those changes and save yourself and
everyone user errors. Here, we’ll see how to create a SharePoint Web
Application scoped feature allowing to provision variables to web.
config at the time of deployment.

The reason why our feature will be activated on Web Application
scope is so that application changes can take place before other
potentially dependent features on site collections and sites are
deployed.

We’ll start by creating new Web Application scoped feature in your
Solution Explorer in Platform project.

1.	 Locate Features node in your Solution Explorer; right click on it
and select Add Feature.

2.	 Specify feature title.

3.	 Select Scope to be a Web Application and save the feature.

4.	 Right click on newly create feature from Solution Explorer and
select Add Event receiver.

5.	 Locate FeatureActivated(SPFeatureReceiverProperties
properties) and uncomment the section.

6.	 Right above the definition for the FeatureActivated you
uncommented add the following security identifier on a class:

Listing 1-7

[SharePointPermission(SecurityAction.LinkDemand, ObjectModel
= true)]

7.	 Add the following namespace reference section:

■■ using System.Collections.Generic;

■■ using Microsoft.SharePoint.Administration;

8.	 Define the class variable that will hold all of your configurations:

		 List<SPWebConfigModification> webConfigModifications =
new List<S		
	 PWebConfigModification>();

Now, if you’re referencing third party assemblies that you have
already copied into your solution structure, you’d perform the steps
below to make your DLLs part of the SharePoint project package.

In your Solution Explorer, in SharePoint project, locate Package and
expand it.

Double click on expanded child element of Package.

Click Advanced from the newly opened window and click Add.

Here pick the option Add Existing Assembly.

Locate an assembly from the disk and click OK.

Figure 1-4 Adding a project output assembly to the package of SharePoint project

A nice feature about Visual Studio is that it will provision all of the
necessary Safe Control attributes into your IIS site web.config file to
make sure your assembly is loaded properly. In some cases, you may
want to make additional changes to web.config at the time of your
solution deployment. You may want to set variables in your web.config
so that your custom application will consume, connection strings,
custom error pages, custom login pages, authentication providers,
and so on. You can either write a one – or two—page deployment

Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 22 Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 23

}

protected void AddAttributeValue(string name, string xpath,
string value)

{

SPWebConfigModification mod = new SPWebConfigModification(name,
xpath);

mod.Sequence = 0;

mod.Type = SPWebConfigModification.SPWebConfigModificationType.
EnsureChildNode;

mod.Value = value;

webConfigModifications.Add(mod);

}

Lastly, we’ll enter our web.config changes to illustrate the syntax we
use. Place the listing below into the FeatureActivated method body

Listing 1-9

SPWebApplication app = properties.Feature.Parent as
SPWebApplication;

string customErrorPath = “configuration/system.web/*[local-
name()=’customErrors’]”;

AddNodeValue(“error”, customErrorPath, “<error
statusCode=’404′ redirect=’~/Pages/404.aspx’ />”);

AddAttributeValue(“mode”, “configuration/system.web/
customErrors”, “On”);

string authenticationPath = “ configuration/system.
web/*[local-name()=’authentication’]”;

AddNodeValue(“forms”, authenticationPath, “<forms
name=’MySignIn’ loginUrl=’SignIn.aspx’ path=’/Pages/’ />”);

SaveConfig(app);

9.	 Add the helper methods (below) right under your
FeatureActivated; those will serve as helper methods entering
various elements and attributes in the web.config

Listing 1-8

protected void SaveConfig(SPWebApplication app)

{

foreach (SPWebConfigModification mod in webConfigModifications)

{

app.WebConfigModifications.Add(mod);

}

webConfigModifications.Clear();

}

protected void AddSection(string name, string xpath)

{

SPWebConfigModification mod = new SPWebConfigModification(name,
xpath);

mod.Sequence = 0;

mod.Type = SPWebConfigModification.SPWebConfigModificationType.
EnsureSection;

webConfigModifications.Add(mod);

}

protected void AddNodeValue(string name, string xpath, string
resource)

{

SPWebConfigModification mod = new SPWebConfigModification(name,
xpath);

mod.Sequence = 0;

mod.Type = SPWebConfigModification.SPWebConfigModificationType.
EnsureChildNode;

mod.Value = resource;

webConfigModifications.Add(mod);

Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 24 Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 25

error message on the screen and search for it in the log file, you will
narrow down troubleshooting from a few thousand lines to ten or so.

One of the other issues you might be having is that SharePoint doesn’t
collect enough logging information in the log files and, therefore, they
become useless. The good news is that you can adjust the verbosity
and type of the logs in SharePoint Central Administration; here is how.

1.	 Navigate to your SharePoint Central Administration with the
install account credentials.

2.	 Click on the Monitoring link on the left side navigation.

3.	 Under the Reporting section, click Configure Diagnostic Logging.

4.	 Here, pick the category of SharePoint activity you wish to
monitor.

5.	 Set the Least critical event to report to the event log to Warning
or other appropriate level.

6.	 In the next dropdown select Verbose to get the most detailed
log information. Keep in mind that this will cause general system
slowdown and produce large volume of logs.

Figure 1-5 Diagnostic logging settings for your SharePoint site

app.Farm.Services.GetValue<SPWebService>().
ApplyWebConfigModifications();

app.Update();

As you can see, we’re calling the helper functions we created earlier
to specify:

■■ Custom 404 error page

■■ Turn on custom errors

■■ Set forms authentication

■■ Set custom form to handle forms authentication

Now, when this solution is deployed the feature will be activated and
all of the defined changes will automatically get provisioned to the
relevant configuration file.

Debugging Your SharePoint Applications
So far, you have learned how to create your solutions and deploy
them automatically. What else could you possibly need before starting
your custom component development? Debugging is next. Knowing
how to debug your application in various scenarios can make a
difference between painful guessing, traversing through thousands
of lines of logs and stepping through the code and identifying the
problem in just few minutes.

In SharePoint 2010, there has been significant improvement in terms
of debugging information that is emitted when errors happen. By
default, SharePoint holds all of its logs in the following location:
[Drive]:\Program Files\Common Files\Microsoft Shared\Web Server
Extensions\14\LOGS.

If you open this location you will see at least few log files that log
the activity happening on your SharePoint install. If you open one
of the files, you will be instantly overloaded with the volumes of
information those logs contain. One of the useful pieces of information
SharePoint provides when errors occur is the Correlation ID of the error.
Correlation ID is the number in a GUID format that links the error with
the corresponding record in the log file. If you copy the ID from the

Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 26 Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 27

Figure 1-6 Determining the physical path of of your SharePoint site using IIS

4.	 Locate the physical path and copy the location. You path is
likely to be something like this: [Drive]:\inetpub\wwwroot\wss\
VirtualDirectories\80.

5.	 Locate the web.config file and open it in Notepad.

6.	 Find the following in the file: customErrors.

7.	 Replace the value of the mode attribute to Off.

8.	 Find the following in the file: debug and change its value to true.

9.	 Find the following in the file: CallStack and change its value to
true.

10.	 Save the file and refresh the page on which you received an
error originally.

Now, you should get a more detailed description of the error and
debug your application.

If you have received an error while executing custom functionality in
SharePoint Central Administration, your steps of troubleshooting would
be exactly as above except in your IIS Manager, you would located
the Physical Path of your SharePoint Central Administration site.

Things can be a bit confusing to most folks who have enabled those
options in their corresponding web.config files and still get a cryptic

7.	 In the Trace Log section, you can also pick where the log will be
stored if different from the current location.

Setting up verbose logging may be helpful at the time you have a
problem but as soon as you don’t need the option to be available,
give your SharePoint server a break and set the logging to be less
verbose and you will notice an increase in performance.

Information in logs is only the data that SharePoint was able to
catch from its modules. If you’re trying to find an issue with your
customizations, SharePoint logs may not be the first place you want to
look.

We have all seen generic error pages and know how frustrating it can
be to determine the cause of the problem.

At first, it’s quite clear that you have to disable custom error reporting
that IIS site SharePoint is running. However, there is at least site
collection you’re working with, as well as the Central Administration
site, not to mention the entire out-of-the-box virtual directories have
their own configuration files. So which web.config file do you have to
modify to get to the bottom of the error message clarity issue?

If your error occurred while performing out-of-the-box activities in
SharePoint or custom Web Parts loaded into the page, you need to make
the following changes.

1.	 Open IIS Manager on your SharePoint server with an install
account credentials.

2.	 Expand Sites node and locate the site that represents your
SharePoint site.

3.	 Right click on the Site node, select Manage Web Site -> Advanced
Settings.

Setting Up for Success: Visual Studio 2010 Solution Structure and Deployment Scripts 28

error when trying to debug their custom page in the _layouts folder or
a custom web service in the _vti_bin folder.

As mentioned before, those are virtual folders in IIS and, therefore,
they have their own web.config which you guessed right … has its own
values set for debugging and error handling.

As you’ve see how to extract the path to the appropriate web.config
location in IIS for web sites, the same approach applies to virtual
directories such as _layouts and _vti_bin. Once you have the physical
location of the file, go ahead and make modifications that apply to
your scenario.

Now, when you open web.config files in your virtual directories, they
will look much smaller and with less detail. This doesn’t mean you have
to specify debugging parameters here. If you specified debug=‘true’
in your site web.config, this value will be inherited. Only the values that
are defined in the virtual directory explicitly need to be overwritten—
usually it’s CustomErrors.

Options above turn on heavy logging on your SharePoint server and
produce significant overhead in processing, meaning it’s not OK to
have those on by default in your production environment.

Chapter 2
Lists and Libraries: List Rollups, Security, and Integration

with the Rest of SharePoint 2010 Components

Working with lists is one of the most common tasks you will do in
SharePoint. After all, lists are nearly everything in SharePoint. Blog
articles, discussions, calendars, document libraries are all lists.
Understanding some of the enhancements in how lists work will make
a difference when creating your custom applications.

We’ll start by adding a simple list to the Visual Studio structure we
have created before. The concept of list includes list definition
and list instance. As the name suggests, the definition will define
what fields your list is going to have, views, and queries. The
instance will create a new instance of this list and possibly set
some initial data into the list. In most cases many lists are already
defined, and in fact, SharePoint comes with variety of available
list types. If you’re happy with any of the list definitions that
SharePoint comes with, the only task to do is to create an instance
of the list. Let’s see what involved in creating a list instance using
Visual Studio. Since our list instance is going to be a generic
instance not tied to any specific page, we’ll create a new Visual
Studio folder under the root of our Platform project and call it Lists.
Following the steps below, we create a list instance.

