
Large Scale
and Big Data

Processing and Management

Edited by

Sherif Sakr
Cairo University, Egypt and

University of New South Wales, Australia

Mohamed Medhat Gaber
School of Computing Science and Digital Media

Robert Gordon University

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® soft-
ware or related products does not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or particular use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20140411

International Standard Book Number-13: 978-1-4665-8150-0 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Large scale and big data : processing and management / editors, Sherif Sakr, Mohamed
Medhat Gaber.

pages cm
Includes bibliographical references and index.
ISBN 978-1-4665-8150-0 (hardback)
1. Database management. 2. Big data. I. Sakr, Sherif, 1979- II. Gaber, Mohamed

Medhat.

QA76.9.D3L3667 2014
005.7--dc23 2014002749

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

v

Contents
Preface..vii
Editors..ix
Contributors...xi

Chapter 1	 Distributed Programming for the Cloud: Models, Challenges,
and Analytics Engines...1

Mohammad Hammoud and Majd F. Sakr

Chapter 2	 MapReduce Family of Large-Scale Data-Processing Systems........... 39

Sherif Sakr, Anna Liu, and Ayman G. Fayoumi

Chapter 3	 iMapReduce: Extending MapReduce for Iterative Processing......... 107

Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang

Chapter 4	 Incremental MapReduce Computations.. 127

Pramod Bhatotia, Alexander Wieder, Umut A. Acar, and
Rodrigo Rodrigues

Chapter 5	 Large-Scale RDF Processing with MapReduce................................ 151

Alexander Schätzle, Martin Przyjaciel-Zablocki,
Thomas Hornung, and Georg Lausen

Chapter 6	 Algebraic Optimization of RDF Graph Pattern Queries on
MapReduce.. 183

Kemafor Anyanwu, Padmashree Ravindra, and HyeongSik Kim

Chapter 7	 Network Performance Aware Graph Partitioning for Large
Graph Processing Systems in the Cloud... 229

Rishan Chen, Xuetian Weng, Bingsheng He, Byron Choi, and Mao Yang

Chapter 8	 PEGASUS: A System for Large-Scale Graph Processing................ 255

Charalampos E. Tsourakakis

Chapter 9	 An Overview of the NoSQL World...287

Liang Zhao, Sherif Sakr, and Anna Liu

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

vi Contents

Chapter 10	 Consistency Management in Cloud Storage Systems....................... 325

Houssem-Eddine Chihoub, Shadi Ibrahim, Gabriel Antoniu,
and Maria S. Perez

Chapter 11	 CloudDB AutoAdmin: A Consumer-Centric Framework for
SLA Management of Virtualized Database Servers......................... 357

Sherif Sakr, Liang Zhao, and Anna Liu

Chapter 12	 An Overview of Large-Scale Stream Processing Engines................ 389

Radwa Elshawi and Sherif Sakr

Chapter 13	 Advanced Algorithms for Efficient Approximate Duplicate
Detection in Data Streams Using Bloom Filters...............................409

Sourav Dutta and Ankur Narang

Chapter 14	 Large-Scale Network Traffic Analysis for Estimating the Size
of IP Addresses and Detecting Traffic Anomalies............................ 435

Ahmed Metwally, Fabio Soldo, Matt Paduano, and Meenal Chhabra

Chapter 15	 Recommending Environmental Big Data Using Semantically
Guided Machine Learning..463

Ritaban Dutta, Ahsan Morshed, and Jagannath Aryal

Chapter 16	 Virtualizing Resources for the Cloud... 495

Mohammad Hammoud and Majd F. Sakr

Chapter 17	 Toward Optimal Resource Provisioning for Economical and
Green MapReduce Computing in the Cloud..................................... 535

Keke Chen, Shumin Guo, James Powers, and Fengguang Tian

Chapter 18	 Performance Analysis for Large IaaS Clouds................................... 557

Rahul Ghosh, Francesco Longo, and Kishor S. Trivedi

Chapter 19	 Security in Big Data and Cloud Computing: Challenges,
Solutions, and Open Problems.. 579

Ragib Hasan

Index... 595

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

vii

Preface
Information from multiple sources is growing at a staggering rate. The number of
Internet users reached 2.27 billion in 2012. Every day, Twitter generates more than
12 TB of tweets, Facebook generates more than 25 TB of log data, and the New
York Stock Exchange captures 1 TB of trade information. About 30 billion radio-
frequency identification (RFID) tags are created every day. Add to this mix the data
generated by the hundreds of millions of GPS devices sold every year, and the more
than 30 million networked sensors currently in use (and growing at a rate faster than
30% per year). These data volumes are expected to double every two years over the
next decade. On the other hand, many companies can generate up to petabytes of
information in the course of a year: web pages, blogs, clickstreams, search indices,
social media forums, instant messages, text messages, email, documents, consumer
demographics, sensor data from active and passive systems, and more. By many
estimates, as much as 80% of this data is semistructured or unstructured. Companies
are always seeking to become more nimble in their operations and more innovative
with their data analysis and decision-making processes, and they are realizing that
time lost in these processes can lead to missed business opportunities. In principle,
the core of the Big Data challenge is for companies to gain the ability to analyze and
understand Internet-scale information just as easily as they can now analyze and
understand smaller volumes of structured information. In particular, the character-
istics of these overwhelming flows of data, which are produced at multiple sources
are currently subsumed under the notion of Big Data with 3Vs (volume, velocity, and
variety). Volume refers to the scale of data, from terabytes to zettabytes, velocity
reflects streaming data and large-volume data movements, and variety refers to the
complexity of data in many different structures, ranging from relational to logs to
raw text.

Cloud computing technology is a relatively new technology that simplifies the
time-consuming processes of hardware provisioning, hardware purchasing, and soft-
ware deployment, therefore, it revolutionizes the way computational resources and
services are commercialized and delivered to customers. In particular, it shifts the
location of this infrastructure to the network to reduce the costs associated with the
management of hardware and software resources. This means that the cloud repre-
sents the long-held dream of envisioning computing as a utility, a dream in which the
economy of scale principles help to effectively drive down the cost of the computing
infrastructure.

This book approaches the challenges associated with Big Data-processing tech-
niques and tools on cloud computing environments from different but integrated
perspectives; it connects the dots. The book is designed for studying various funda-
mental challenges of storing and processing Big Data. In addition, it discusses the
applications of Big Data processing in various domains. In particular, the book is
divided into three main sections. The first section discusses the basic concepts and
tools of large-scale big-data processing and cloud computing. It also provides an

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

viii Preface

overview of different programming models and cloud-based deployment models.
The second section focuses on presenting the usage of advanced Big Data-processing
techniques in different practical domains such as semantic web, graph processing,
and stream processing. The third section further discusses advanced topics of Big
Data processing such as consistency management, privacy, and security.

In a nutshell, the book provides a comprehensive summary from both of the
research and the applied perspectives. It will provide the reader with a better under-
standing of how Big Data-processing techniques and tools can be effectively utilized
in different application domains.

Sherif Sakr
Mohamed Medhat Gaber

MATLAB® is a registered trademark of The MathWorks, Inc. For product informa-
tion, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

287

9 An Overview of the
NoSQL World

Liang Zhao, Sherif Sakr, and Anna Liu

Over the past decade, rapidly growing Internet-based services such as e-mail, blog-
ging, social networking, search, and e-commerce have substantially redefined the
way consumers communicate, access contents, share information and purchase prod-
ucts. Relational database management systems (RDBMS) have been considered as
the one-size-fits-all solution for data persistence and retrieval for decades. However,
the ever-increasing need for scalability and new application requirements have cre-
ated new challenges for traditional RDBMS. Recently, a new generation of low-cost,
high-performance database software, aptly named as NoSQL (Not Only SQL), has
emerged to challenge the dominance of RDBMS. The main features of these systems
include ability to horizontally scale, supporting weaker consistency models, using flex-
ible schemas and data models and supporting simple low-level query interfaces. In this
chapter, we explore the recent advancements and the new approaches of web-scale
data management. We discuss the advantages and disadvantages of several recently
introduced approaches and its suitability to support certain class of applications and

Contents

9.1	 Introduction...288
9.2	 NoSQL Key Systems... 291

9.2.1	 Google: Bigtable.. 291
9.2.2	 Yahoo: PNUTS.. 293
9.2.3	 Amazon: Dynamo..294

9.3	 NoSQL Open Source Projects...296
9.4	 Database-as-a-Service...299

9.4.1	 Google Datastore...299
9.4.2	 Amazon: S3/SimpleDB/Amazon RDS.. 301
9.4.3	 Microsoft SQL Azure..303

9.5	 Web Scale Data Management: Tradeoffs..305
9.6	 Challenges of the New Wave of NoSQL Systems...308

9.6.1	 True Elasticity..308
9.6.2	 Data Replication and Consistency Management...............................309
9.6.3	 SLA Management.. 312
9.6.4	 Transaction Support... 314

9.7	 Discussion and Conclusions... 317
References... 320

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

288 Large Scale and Big Data

end users. Finally, we present and discuss some of the current challenges and open
research problems to be tackled to improve the current state-of-the-art.

9.1 � INTRODUCTION

Over the past decade, rapidly growing Internet-based services such as e-mail, blog-
ging, social networking, search, and e-commerce have substantially redefined the
way consumers communicate, access contents, share information, and purchase
products. In particular, the recent advances in the web technology have made it easy
for any user to provide and consume content of any form. For example, building a
personal web page (e.g., Google Sites*), starting a blog (e.g., WordPress,† Blogger,‡
LiveJournal§), and making both searchable for the public have become a commod-
ity that is available for users all over the world. Arguably, the main goal of the next
wave is to facilitate the job of implementing every application as a distributed, scal-
able, and widely accessible service on the web. Services such as Facebook,¶ Flickr,**
YouTube,†† Zoho,‡‡ and LinkedIn§§ are currently leading this approach. Such appli-
cations are both data-intensive and very interactive. For example, the Facebook
social network has announced that it has more than 800 millions of monthly active
users.¶¶ Each user has an average of 130 friendship relations. Moreover, there are
about 900 million objects that registered users interact with, such as pages, groups,
events, and community pages. Other smaller scale social networks such as LinkedIn,
which is mainly used for professionals, has more than 120 million registered users.
Twitter has also claimed to have over 100 million active monthly users. Therefore, it
becomes an ultimate goal to make it easy for every application to achieve such high
scalability and availability goals with minimum efforts.

In general, relational database management systems (e.g., MySQL, PostgreSQL,
SQL Server, Oracle) have been considered as the one-size-fits-all solution for data
persistence and retrieval for decades. They have matured after extensive research
and development efforts and very successfully created a large market and solutions
in different business domains. However, the ever-increasing need for scalability and
new application requirements have created new challenges for traditional RDBMS.
Therefore, recently, there has been some dissatisfaction with this one-size-fits-all
approach in some web-scale applications [58]. Nowadays, the most common archi-
tecture to build enterprise web applications is based on a three-tier approach: the
web server layer, the application server layer, and the data layer. In practice, data
partitioning [50] and data replication [40] are two well-known strategies to achieve
the availability, scalability, and performance improvement goals in the distributed

*	http://sites.google.com/.
†	 http://wordpress.org/.
‡	 http://www.blogger.com/.
§	 http://www.livejournal.com/.
¶	 http://www.facebook.com/.
**	http://www.flickr.com/.
††	http://www.youtube.com/.
‡‡	http://www.zoho.com/.
§§	http://www.linkedin.com/.
¶¶	http://www.facebook.com/press/info.php?statistics.

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

289An Overview of the NoSQL World

data management world. In particular, when the application load increases, there are
two main options for achieving scalability at the database tier that enables the appli-
cations to cope with more client requests (Figure 9.1) as follows:

	 1.	Scaling up: aims at allocating a bigger machine to act as database servers.
	 2.	Scaling out: aims at replicating and partitioning data across more machines.

In fact, the scaling up option has the main drawback that large machines are often
very expensive and eventually a physical limit is reached where a more powerful
machine cannot be purchased at any cost. Alternatively, it is both extensible and
economical–especially in a dynamic workload environment–to scale out by add-
ing storage space or buying another commodity server, which fits well with the new
pay-as-you-go philosophy of cloud computing.

Recently, a new generation of low-cost, high-performance database software has
emerged to challenge the dominance of relational database management systems. A
big reason for this movement, named as NoSQL (Not Only SQL), is that different
implementations of web, enterprise, and cloud computing applications have different
database requirements (e.g., not every application requires rigid data consistency).
For example, for high-volume web sites (e.g., eBay, Amazon, Twitter, Facebook),
scalability and high availability are essential requirements that cannot be compro-
mised. For these applications, even the slightest outage can have significant financial
consequences and impacts customers’ trust.

In general, the CAP theorem [15,34] and the PACELC model [1] describe the
existence of direct tradeoffs between consistency and availability as well as con-
sistency and latency. For example, the CAP theorem shows that a distributed data-
base system can only choose at most two out of three properties: Consistency,
Availability, and tolerance to Partitions. Therefore, there is a plethora of alterna-
tive consistency models, which have been introduced for offering different per-
formance tradeoffs such as session guarantees, causal consistency [7], causal+
consistency [48], and parallel snapshot isolation [57]. In practice, the new wave of

Scale up

Scaling up: run your solution on bigger server

Scale out

Scaling out: run your solution on several servers

FIGURE 9.1  Database scalability options.

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

290 Large Scale and Big Data

NoSQL systems decided to compromise on the strict consistency requirement. In
particular, they apply a relaxed consistency policy called eventual consistency [63],
which guarantees that if no new updates are made to a replicated object, eventually
all accesses will return the last updated value. If no failures occur, the maximum
size of the inconsistency window can be determined based on factors such as com-
munication delays, the load on the system, and the number of replicas involved in
the replication scheme. In particular, these new NoSQL systems have a number of
design features in common:

•	 The ability to horizontally scale out throughput over many servers.
•	 A simple call level interface or protocol (in contrast to a SQL binding).
•	 Supporting weaker consistency models in contrast to ACID guaranteed

properties for transactions in most traditional RDBMS. These models
are usually referred to as BASE models (Basically Available, Soft state,
Eventually consistent) [53].

•	 Efficient use of distributed indexes and RAM for data storage.
•	 The ability to dynamically define new attributes or data schema.

These design features are made to achieve the following system goals:

•	 Availability: They must always be accessible even during network failure or
a whole datacenter going offline.

•	 Scalability: They must be able to support very large databases with very
high request rates at very low latency.

•	 Elasticity: They must be able to satisfy changing application requirements
in both directions (scaling up or scaling down). Moreover, the system must
be able to gracefully respond to these changing requirements and quickly
recover its steady state.

•	 Load balancing: They must be able to automatically move load between
servers so that most of the hardware resources are effectively utilized and
to avoid any resource overloading situations.

•	 Fault tolerance: They must be able to deal with the situation that the
rarest hardware problems go from being freak events to eventualities.
While hardware failure is still a serious concern, this concern needs to
be addressed at the architectural level of the database, rather than requir-
ing developers, administrators, and operations staff to build their own
redundant solutions.

•	 Ability to run in a heterogeneous environment: On scaling out environ-
ment, there is a strong trend toward increasing the number of nodes that
participate in query execution. It is nearly impossible to get homogeneous
performance across hundreds or thousands of compute nodes. Part failures
that do not cause complete node failure, but result in degraded hardware
performance become more common at scale. Hence, the system should be
designed to run in a heterogeneous environment and must take appropriate
measures to prevent performance degradation that are due to parallel pro-
cessing on distributed nodes.

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

291An Overview of the NoSQL World

This chapter explores the recent advancements and the new approaches of the web-
scale data management. We discuss the advantages and the disadvantages of each
approach and its suitability to support certain class of applications and end users. Section
9.2 describes the NoSQL systems that are introduced and used internally in the key
players: Google, Yahoo, and Amazon, respectively. Section 9.3 provides an overview of
a set of open-source projects, which have been designed following the main principles
of the NoSQL systems. Section 9.4 discusses the notion of providing database manage-
ment as a service and gives an overview of the main representative systems and their
challenges. The web-scale data management tradeoffs and open research challenges are
discussed in Section 9.5 before we conclude the chapter in Section 9.7.

9.2 �N oSQL KEY SYSTEMS

This section provides an overview of the main NoSQL systems which has been intro-
duced and used internally by three of the key players in the web-scale data manage-
ment domain: Google, Yahoo, and Amazon.

9.2.1 � Google: Bigtable

Bigtable is a distributed storage system for managing structured data that is designed
to scale to a very large size (petabytes of data) across thousands of commodity serv-
ers [21]. It has been used by more than 60 Google products and projects such as
Google search engine,* Google Finance,† Orkut,‡ Google Docs,§ and Google Earth.¶
These products use Bigtable for a variety of demanding workloads, which range
from throughput-oriented batch-processing jobs to latency-sensitive serving of data
to end users. The Bigtable clusters used by these products span a wide range of con-
figurations, from a handful to thousands of servers, and store up to several hundred
terabytes of data.

Bigtable does not support a full relational data model. However, it provides clients
with a simple data model that supports dynamic control over data layout and format. In
particular, a Bigtable is a sparse, distributed, persistent multidimensional sorted map.
The map is indexed by a row key, column key, and a timestamp. Each value in the
map is an uninterpreted array of bytes. Thus, clients usually need to serialize various
forms of structured and semistructured data into these strings. A concrete example that
reflects some of the main design decisions of Bigtable is the scenario of storing a copy
of a large collection of web pages into a single table. Figure 9.2 illustrates an example
of this table where URLs are used as row keys and various aspects of web pages as
column names. The contents of the web pages are stored in a single column that stores
multiple versions of the page under the timestamps when they were fetched.

The row keys in a table are arbitrary strings where every read or write of data
under a single row key is atomic. Bigtable maintains the data in lexicographic order

*	http://www.google.com/.
†	 http://www.google.com/finance.
‡	 http://www.orkut.com/.
§	 http://docs.google.com/.
¶	 http://earth.google.com/.

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

292 Large Scale and Big Data

by row key where the row range for a table is dynamically partitioned. Each row
range is called a tablet, which represents the unit of distribution and load balancing.
Thus, reads of short row ranges are efficient and typically require communication
with only a small number of machines. Bigtables can have an unbounded number of
columns that are grouped into sets called column families. These column families
represent the basic unit of access control. Each cell in a Bigtable can contain multiple
versions of the same data that are indexed by their timestamps. Each client can flex-
ibly decide the number of n versions of a cell that need to be kept. These versions are
stored in decreasing timestamp order so that the most recent versions can be always
read first.

The Bigtable API provides functions for creating and deleting tables and column
families. It also provides functions for changing cluster, table, and column family
metadata, such as access control rights. Client applications can write or delete values
in Bigtable, look up values from individual rows, or iterate over a subset of the data
in a table. At the transaction level, Bigtable supports only single-row transactions,
which can be used to perform atomic read–modify–write sequences on data stored
under a single row key (i.e., no general transactions across row keys).

At the physical level, Bigtable uses the distributed Google File System (GFS)
[33] to store log, and data files. The Google SSTable file format is used internally
to store Bigtable data. An SSTable provides a persistent, ordered immutable map
from keys to values, where both keys and values are arbitrary byte strings. Bigtable
relies on a distributed lock service called Chubby [17], which consists of five active
replicas, one of which is elected to be the master and actively serves requests. The
service is live when a majority of the replicas are running and can communicate
with each other. Bigtable uses Chubby for a variety of tasks such as (1) ensuring
that there is at most one active master at any time, (2) storing the bootstrap location
of Bigtable data, (3) storing Bigtable schema information and to the access control
lists. The main limitation of this design is that if Chubby becomes unavailable for an
extended period of time, the whole Bigtable becomes unavailable. At the runtime,
each Bigtable is allocated to one master server and many tablet servers, which can be
dynamically added (or removed) from a cluster based on the changes in workloads.
The master server is responsible for assigning tablets to tablet servers, balancing tablet-
server load, and garbage collection of files in GFS. In addition, it handles schema
changes such as table and column family creations. Each tablet server manages a set
of tablets. The tablet server handles read and write requests to the tablets that it has
loaded, and also splits tablets that have grown too large.

“CNN.com”“CNN”
“<html>...”

“<html>...”
“<html>...”

t9
t6

t3t5
t8

“anchor:cnnsi.com”

“com.cnn.www”

“anchor:my.look.ca”“contents”:

FIGURE 9.2  Sample Bigtable structure. (From F. Chang et al., ACM Trans. Comput. Syst.,
26, 2008.)

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

293An Overview of the NoSQL World

9.2.2 � Yahoo: PNUTS

The PNUTS system (renamed later to Sherpa) is a massive-scale hosted database
system that is designed to support Yahoo!s web applications [25,56]. The main focus
of the system is on data serving for web applications, rather than complex queries. It
relies on a simple relational model where data is organized into tables of records with
attributes. In addition to typical data types, blob is a main valid data type, which
allows arbitrary structures to be stored inside a record, but not necessarily large
binary objects like images or audio. The PNUTS system does not enforce constraints
such as referential integrity on the underlying data. Therefore, the schema of these
tables are flexible where new attributes can be added at any time without halting any
query or update activity. In addition, it is not required that each record have values
for all attributes.

Figure 9.3 illustrates the system architecture of PNUTS. The system is divided
into regions where each region contains a full complement of system components
and a complete copy of each table. Regions are typically, but not necessarily, geo-
graphically distributed. Therefore, at the physical level, data tables are horizontally
partitioned into groups of records called tablets. These tablets are scattered across
many servers where each server might have hundreds or thousands of tablets. The
assignment of tablets to servers is flexible in a way that allows balancing the work-
loads by moving a few tablets from an overloaded server to an underloaded server.

The query language of PNUTS supports selection and projection from a single
table. Operations for updating or deleting existing records must specify the primary
key. The system is designed primarily for online serving workloads that consist
mostly of queries that read and write single records or small groups of records. Thus,
it provides a multiget operation that supports retrieving multiple records in parallel
by specifying a set of primary keys and an optional predicate. The router component
(Figure 9.3) is responsible of determining which storage unit needs to be accessed for
a given record to be read or written by the client. Therefore, the primary-key space
of a table is divided into intervals where each interval corresponds to one tablet.
The router stores an interval mapping that defines the boundaries of each tablet and
maps each tablet to a storage unit. The query model of PNUTS does not support join
operations that are too expensive in such massive scale systems.

Tablet
controller

Tablet
controller

Region 1

Message
broker

RoutersRouters

Region 2

Storage units Storage units

FIGURE 9.3  PNUTS system architecture. (From B. F. Cooper et al., PVLDB, 1, 1277–1288,
2008.)

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

294 Large Scale and Big Data

The PNUTS system does not have a traditional database log or archive data.
However, it relies on a pub/submechanism that act as a redo log for replaying updates
that are lost before being applied to disk due to failure. In particular, PNUTS pro-
vides a consistency model that is between the two extremes of general serializability
and eventual consistency [63]. The design of this model is derived from the observa-
tion that web applications typically manipulate one record at a time while different
records may have activity with different geographic locality. Thus, it provides per-
record timeline consistency where all replicas of a given record apply all updates
to the record in the same order. In particular, for each record, one of the replicas
(independently) is designated as the master where all updates to that record are for-
warded to the master. The master replica for a record is adaptively changed to suit the
workload where the replica receiving the majority of write requests for a particular
record is selected to be the master for that record. Relying on the per-record timeline
consistency model, the PNUTS system supports the following range of API calls
with varying levels of consistency guarantees

•	 Read-any: This call has a lower latency as it returns a possibly stale version
of the record.

•	 Read-critical (required version): This call returns a version of the record
that is strictly newer than or the same as the required version.

•	 Read-latest: This call returns the latest copy of the record that reflects all
writes that have succeeded. It is expected that the read-critical and read-
latest can have a higher latency than read-any if the local copy is too stale
and the system needs to locate a newer version at a remote replica.

•	 Write: This call gives the same ACID guarantees as a transaction with a
single write operation in it (e.g., blind writes).

•	 Test-and-set-write (required version): This call performs the requested
write to the record if and only if the present version of the record is the same
as the required version. This call can be used to implement transactions that
first read a record, and then do a write to the record based on the read, e.g.,
incrementing the value of a counter.

Since the system is designed to scale to cover several worldwide replicas, auto-
mated failover, and load balancing is the only way to manage the operations load.
Therefore, for any failed server, the system automatically recovers by copying data
from a replica to other live servers.

9.2.3 �A mazon: Dynamo

Amazon runs a worldwide e-commerce platform that serves tens of millions custom-
ers at peak times using tens of thousands of servers located in many data centers
around the world. In this environment, there are strict operational requirements on
Amazon’s platform in terms of performance, reliability, and efficiency, and to support
Amazon’s continuous growth the platform needs to be highly scalable. Reliability is
one of the most important requirements because even the slightest outage has signifi-
cant financial consequences and impacts customer trust.

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

295An Overview of the NoSQL World

The Dynamo system [30] is a highly available and scalable distributed key/value-
based datastore built for supporting internal Amazon’s applications. Dynamo is used
to manage the state of services that have very high reliability requirements and need
tight control over the tradeoffs among availability, consistency, cost-effectiveness,
and performance. There are many services on Amazons platform that only need
primary-key access to a data store. The common pattern of using a relational data-
base would lead to inefficiencies and limit the ability to scale and provide high avail-
ability. Thus, Dynamo provides a simple primary-key-only interface to meet the
requirements of these applications. The query model of the Dynamo system relies on
simple read and write operations to a data item that is uniquely identified by a key.
State is stored as binary objects (blobs) identified by unique keys. No operations span
multiple data items.

Dynamo’s partitioning scheme relies on a variant of consistent hashing mecha-
nisms [39] to distribute the load across multiple storage hosts. In this mechanism,
the output range of a hash function is treated as a fixed circular space or ring (i.e.,
the largest hash value wraps around to the smallest hash value). Each node in the
system is assigned a random value within this space, which represents its position
on the ring. Each data item identified by a key is assigned to a node by hashing the
data item’s key to yield its position on the ring, and then walking the ring clock-
wise to find the first node with a position larger than the item’s position. Thus, each
node becomes responsible for the region in the ring between it and its predecessor
node on the ring. The principle advantage of consistent hashing is that departure
or arrival of a node only affects its immediate neighbors and other nodes remain
unaffected.

In the Dynamo system, each data item is replicated at N hosts where N is a param-
eter configured per-instance. Each key k is assigned to a coordinator node. The coor-
dinator is in charge of the replication of the data items that fall within its range. In
addition to locally storing each key within its range, the coordinator replicates these
keys at the (N − 1) clockwise successor nodes in the ring. This results in a system
where each node is responsible for the region of the ring between it and its Nth pre-
decessor. As illustrated in Figure 9.4, node B replicates the key k at nodes C and D

A

B

C

DE

F

G

Key K

Nodes B, C,
and D store

keys in
range (A, B)
including K.

FIGURE 9.4  Partitioning and replication of keys in the Dynamo ring. (From G. DeCandia
et al., Dynamo: Amazon’s highly available key-value store, in SOSP, pp. 205–220, 2007.)

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

296 Large Scale and Big Data

in addition to storing it locally. Node D will store the keys that fall in the ranges (A,
B), (B, C), and (C, D). The list of nodes that is responsible for storing a particular key
is called the preference list. The system is designed so that every node in the system
can determine which nodes should be in this list for any particular key.

9.3 �N oSQL OPEN SOURCE PROJECTS

In practice, most NoSQL data management systems that are introduced by the key
players (e.g., Bigtable, Dynamo, PNUTS) are meant for their internal use only and
are thus, not available for public users. Therefore, many open-source projects have
been built to implement the concepts of these systems and make it available for
public users [18,54]. Due to the ease in which they can be downloaded and installed,
these systems have attracted a lot of interest from the research community. There are
not many details that have been published about the implementation of most of these
systems. In general, the NoSQL open-source projects can be broadly classified into
the following categories:

•	 Key-value stores: These systems use the simplest data model, which is a
collection of objects where each object has a unique key and a set of attri-
bute/value pairs.

•	 Document stores: These systems have the data models that consists of
objects with a variable number of attributes with a possibility of having
nested objects.

•	 Extensible record stores: They provide variable-width tables (Column
Families) that can be partitioned vertically and horizontally across multiple
nodes.

Here, we give a brief introduction about some of these projects. For the full list,
we refer the reader to the NoSQL database website.*

Cassandra† is presented as a highly scalable, eventually consistent, distributed,
structured key-value store [44,45]. It was open-sourced by Facebook in 2008. It
is designed by Avinash Lakshman (one of the authors of Amazon’s Dynamo) and
Prashant Malik (Facebook engineer). Cassandra brings together the distributed
systems technologies from Dynamo and the data model from Google’s Bigtable.
Like Dynamo, Cassandra is eventually consistent. Like Bigtable, Cassandra pro-
vides a column family-based data model richer than typical key/value systems.
In Cassandra’s data model, column is the lowest/smallest increment of data. It is
a tuple (triplet) that contains a name, a value, and a timestamp. A column family
is a container for columns, analogous to the table in a relational system. It con-
tains multiple columns, each of which has a name, value, and a timestamp, and
are referenced by row keys. A keyspace is the first dimension of the Cassandra
hash, and is the container for column families. Keyspaces are of roughly the same
granularity as a schema or database (i.e., a logical collection of tables) in RDBMS.

*	http://NoSQL-database.org/.
†	 http://cassandra.apache.org/.

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

297An Overview of the NoSQL World

They can be seen as a namespace for ColumnFamilies and is typically allocated
as one per application. SuperColumns represent columns that themselves have
subcolumns (e.g., Maps). Like Dynamo, Cassandra provides a tunable consistency
model that allows the ability to choose the consistency level that is suitable for a
specific application. For example, it allows to choose how many acknowledgments
are required to be received from different replicas before considering a WRITE
operation to be successful. Similarly, the application can choose how many suc-
cessful responses need to be received in the case of READ before returning the
result to the client. In particular, every write operation can choose one of the fol-
lowing consistency levels:

	 a.	ZERO: It ensures nothing. The write operation will be executed asynchro-
nously in the system background.

	 b.	ANY: It ensures that the write operation has been executed in at least one
node.

	 c.	ONE: It ensures that the write operation has been committed to at least 1
replica before responding to the client.

	 d.	QUORUM: It ensures that the write has been executed on (N/2 + 1) repli-
cas before responding to the client where N is the total number of system
replicas.

	 e.	ALL: It ensures that the write operation has been committed to all N repli-
cas before responding to the client.

On the other hand, every read operation can choose one of the following available
consistency levels:

	 a.	ONE: It will return the record of the first responding replica.
	 b.	QUORUM: It will query all replicas and return the record with the most

recent timestamp once it has at least a majority of replicas (N/2 + 1) reported.
	 c.	ALL: It will query all replicas and return the record with the most recent

timestamp once all replicas have replied.

Therefore, any unresponsive replicas will fail the read operation. For read opera-
tions, in the ONE and QUORUM consistency levels, a consistency check is always
done with the remaining replicas in the system background to fix any consistency
issues.

HBase* is another project is based on the ideas of Bigtable system. It uses the
Hadoop distributed filesystem (HDFS)† as its data storage engine. The advantage
of this approach is that HBase does not need to worry about data replication, data
consistency, and resiliency because HDFS already considers and deals with them.
However, the downside is that it becomes constrained by the characteristics of HDFS,
which is that it is not optimized for random read access. In the HBase architecture,
data is stored in a farm of Region Servers. A key-to-server mapping is used to locate

*	http://hbase.apache.org/.
†	 http://hadoop.apache.org/hdfs/.

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

298 Large Scale and Big Data

the corresponding server. The in-memory data storage is implemented using a dis-
tributed memory object caching system called Memcache,* while the on-disk data
storage is implemented as a HDFS file residing in the Hadoop data node server.

The HyperTable† project is designed to achieve a high performance, scalable, dis-
tributed storage, and processing system for structured and unstructured data. It is
designed to manage the storage and processing of information on a large cluster of
commodity servers, providing resilience to machine and component failures. Like
HBase, Hypertable also runs over HDFS to leverage the automatic data replication,
and fault tolerance that it provides. In HyperTable, data is represented in the system
as a multidimensional table of information. The HyperTable systems provides a low-
level API and Hypertable Query Language (HQL) that provides the ability to create,
modify, and query the underlying tables. The data in a table can be transformed and
organized at high speed by performing computations in parallel, pushing them to
where the data is physically stored.

CouchDB‡ is a document-oriented database that is written in Erlang and can be
queried and indexed in a MapReduce fashion using JavaScript. In CouchDB, docu-
ments are the primary unit of data. A CouchDB document is an object that consists
of named fields. Field values may be strings, numbers, dates, or even ordered lists
and associative maps. Hence, a CouchDB database is a flat collection of documents
where each document is identified by a unique ID. CouchDB provides a RESTful
HTTP API for reading and updating (add, edit, delete) database documents. The
CouchDB document update model is lockless and optimistic. Document edits are
made by client applications. If another client was editing the same document at the
same time, the client gets an edit conflict error on save. To resolve the update con-
flict, the latest document version can be opened, the edits reapplied, and the update
retried again. Document updates are all or nothing, either succeeding entirely or
failing completely. The database never contains partially saved or edited documents.

MongoDB§ is another example of distributed schema-free document-oriented
database, which is created at 10gen.¶ It is implemented in C++ but provides drivers
for a number of programming languages including C, C++, Erlang. Haskell, Java,
JavaScript, Perl, PHP, Python, Ruby, and Scala. It also provides a JavaScript
command-line interface. MongoDB stores documents as BSON (Binary JSON),
which are binary encoded JSON like objects. BSON supports nested object struc-
tures with embedded objects and arrays. At the heart of MongoDB is the concept
of a document that is represented as an ordered set of keys with associated values.
A collection is a group of documents. If a document is the MongoDB analog of a
row in a relational database, then a collection can be thought of as the analog to a
table. Collections are schema-free. This means that the documents within a single
collection can have any number of different shapes. MongoDB groups collections
into databases. A single instance of MongoDB can host several databases, each of
which can be thought of as completely independent. It provides eventual consistency

*	http://memcached.org/.
†	 http://hypertable.org/.
‡	 http://couchdb.apache.org/.
§	 http://www.mongodb.org/.
¶	 http://www.10gen.com/.

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

299An Overview of the NoSQL World

guarantees in a way that a process could read an old version of a document even if
another process has already performed an update operation on it. In addition, it pro-
vides no transaction management so that if a process reads a document and writes a
modified version back to the database, there is a possibility that another process may
write a new version of the same document between the read and the write operation
of the first process. MongoDB supports indexing the documents on multiple fields. In
addition, it provides a very rich API interface that supports different batch operations
and aggregate functions.

Many other variant projects have followed the NoSQL movement and support
different types of data stores such as key-value stores (e.g., Voldemort,* Dynomite†),
document stores (e.g., Riak‡), and graph stores (e.g., Neo4j,§ DEX¶).

9.4 � DATABASE-AS-A-SERVICE

Multitenancy, a technique which is pioneered by salesforce.com,** is an optimization
mechanism for hosted services in which multiple customers are consolidated onto the
same operational system and thus the economy of scale principles help to effectively
drive down the cost of computing infrastructure. In particular, multitenancy allows
pooling of resources that improves utilization by eliminating the need to provision
each tenant for their maximum load. Therefore, multitenancy is an attractive mecha-
nism for both of the service providers who are able to serve more customers with a
smaller set of machines, and also to customers of these services who do not need to
pay the price of renting the full capacity of a server. Database-as-a-service (DaaS) is
a new paradigm for data management in which a third–party service provider hosts a
database as a service [3,37]. The service provides data management for its customers
and thus alleviates the need for the service user to purchase expensive hardware and
software, deal with software upgrades, and hire professionals for administrative and
maintenance tasks. Since using an external database service promises reliable data
storage at a low cost, it represents a very attractive solution for companies especially
that of startups. In this section, we give an overview of the state-of-the-art of differ-
ent options of DaaS from the key players Google, Amazon, and Microsoft.

9.4.1 � Google Datastore

Google has released the Google AppEngine datastore,†† which provides a scalable sche-
maless object data storage for web application. It performs queries over data objects,
known as entities. An entity has one or more properties where one property can be a
reference to another entity. Datastore entities are schemaless where two entities of the
same kind are not obligated to have the same properties, or use the same value types

*	http://project-voldemort.com/.
†	 http://wiki.github.com/cliffmoon/dynomite/dynomite-framework.
‡	 http://wiki.basho.com/display/RIAK/Riak.
§	 http://neo4j.org/.
¶	 http://www.dama.upc.edu/technology-transfer/dex.
**	 http://www.salesforce.com/.
††	http://code.google.com/appengine/docs/python/datastore/.

Buy this book at http://www.crcpress.com/product/isbn/9781466581500

	Pages from K18876_Book-2
	Pages from K18876_Book

