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Preface
Information from multiple sources is growing at a staggering rate. The number of 
Internet users reached 2.27 billion in 2012. Every day, Twitter generates more than 
12 TB of tweets, Facebook generates more than 25 TB of log data, and the New 
York Stock Exchange captures 1 TB of trade information. About 30 billion radio-
frequency identification (RFID) tags are created every day. Add to this mix the data 
generated by the hundreds of millions of GPS devices sold every year, and the more 
than 30 million networked sensors currently in use (and growing at a rate faster than 
30% per year). These data volumes are expected to double every two years over the 
next decade. On the other hand, many companies can generate up to petabytes of 
information in the course of a year: web pages, blogs, clickstreams, search indices, 
social media forums, instant messages, text messages, email, documents, consumer 
demographics, sensor data from active and passive systems, and more. By many 
estimates, as much as 80% of this data is semistructured or unstructured. Companies 
are always seeking to become more nimble in their operations and more innovative 
with their data analysis and decision-making processes, and they are realizing that 
time lost in these processes can lead to missed business opportunities. In principle, 
the core of the Big Data challenge is for companies to gain the ability to analyze and 
understand Internet-scale information just as easily as they can now analyze and 
understand smaller volumes of structured information. In particular, the character-
istics of these overwhelming flows of data, which are produced at multiple sources 
are currently subsumed under the notion of Big Data with 3Vs (volume, velocity, and 
variety). Volume refers to the scale of data, from terabytes to zettabytes, velocity 
reflects streaming data and large-volume data movements, and variety refers to the 
complexity of data in many different structures, ranging from relational to logs to 
raw text.

Cloud computing technology is a relatively new technology that simplifies the 
time-consuming processes of hardware provisioning, hardware purchasing, and soft-
ware deployment, therefore, it revolutionizes the way computational resources and 
services are commercialized and delivered to customers. In particular, it shifts the 
location of this infrastructure to the network to reduce the costs associated with the 
management of hardware and software resources. This means that the cloud repre-
sents the long-held dream of envisioning computing as a utility, a dream in which the 
economy of scale principles help to effectively drive down the cost of the computing 
infrastructure.

This book approaches the challenges associated with Big Data-processing tech-
niques and tools on cloud computing environments from different but integrated 
perspectives; it connects the dots. The book is designed for studying various funda-
mental challenges of storing and processing Big Data. In addition, it discusses the 
applications of Big Data processing in various domains. In particular, the book is 
divided into three main sections. The first section discusses the basic concepts and 
tools of large-scale big-data processing and cloud computing. It also provides an 
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viii Preface

overview of different programming models and cloud-based deployment models. 
The second section focuses on presenting the usage of advanced Big Data-processing 
techniques in different practical domains such as semantic web, graph processing, 
and stream processing. The third section further discusses advanced topics of Big 
Data processing such as consistency management, privacy, and security.

In a nutshell, the book provides a comprehensive summary from both of the 
research and the applied perspectives. It will provide the reader with a better under-
standing of how Big Data-processing techniques and tools can be effectively utilized 
in different application domains.

Sherif Sakr
Mohamed Medhat Gaber

MATLAB® is a registered trademark of The MathWorks, Inc. For product informa-
tion, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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9 An Overview of the 
NoSQL World

Liang Zhao, Sherif Sakr, and Anna Liu

Over the past decade, rapidly growing Internet-based services such as e-mail, blog-
ging, social networking, search, and e-commerce have substantially redefined the 
way consumers communicate, access contents, share information and purchase prod-
ucts. Relational database management systems (RDBMS) have been considered as 
the one-size-fits-all solution for data persistence and retrieval for decades. However, 
the ever-increasing need for scalability and new application requirements have cre-
ated new challenges for traditional RDBMS. Recently, a new generation of low-cost, 
high-performance database software, aptly named as NoSQL (Not Only SQL), has 
emerged to challenge the dominance of RDBMS. The main features of these systems 
include ability to horizontally scale, supporting weaker consistency models, using flex-
ible schemas and data models and supporting simple low-level query interfaces. In this 
chapter, we explore the recent advancements and the new approaches of web-scale 
data management. We discuss the advantages and disadvantages of several recently 
introduced approaches and its suitability to support certain class of applications and 
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288 Large Scale and Big Data

end users. Finally, we present and discuss some of the current challenges and open 
research problems to be tackled to improve the current state-of-the-art.

9.1 � INTRODUCTION

Over the past decade, rapidly growing Internet-based services such as e-mail, blog-
ging, social networking, search, and e-commerce have substantially redefined the 
way consumers communicate, access contents, share information, and purchase 
products. In particular, the recent advances in the web technology have made it easy 
for any user to provide and consume content of any form. For example, building a 
personal web page (e.g., Google Sites*), starting a blog (e.g., WordPress,† Blogger,‡ 
LiveJournal§), and making both searchable for the public have become a commod-
ity that is available for users all over the world. Arguably, the main goal of the next 
wave is to facilitate the job of implementing every application as a distributed, scal-
able, and widely accessible service on the web. Services such as Facebook,¶ Flickr,** 
YouTube,†† Zoho,‡‡ and LinkedIn§§ are currently leading this approach. Such appli-
cations are both data-intensive and very interactive. For example, the Facebook 
social network has announced that it has more than 800 millions of monthly active 
users.¶¶ Each user has an average of 130 friendship relations. Moreover, there are 
about 900 million objects that registered users interact with, such as pages, groups, 
events, and community pages. Other smaller scale social networks such as LinkedIn, 
which is mainly used for professionals, has more than 120 million registered users. 
Twitter has also claimed to have over 100 million active monthly users. Therefore, it 
becomes an ultimate goal to make it easy for every application to achieve such high 
scalability and availability goals with minimum efforts.

In general, relational database management systems (e.g., MySQL, PostgreSQL, 
SQL Server, Oracle) have been considered as the one-size-fits-all solution for data 
persistence and retrieval for decades. They have matured after extensive research 
and development efforts and very successfully created a large market and solutions 
in different business domains. However, the ever-increasing need for scalability and 
new application requirements have created new challenges for traditional RDBMS. 
Therefore, recently, there has been some dissatisfaction with this one-size-fits-all 
approach in some web-scale applications [58]. Nowadays, the most common archi-
tecture to build enterprise web applications is based on a three-tier approach: the 
web server layer, the application server layer, and the data layer. In practice, data 
partitioning [50] and data replication [40] are two well-known strategies to achieve 
the availability, scalability, and performance improvement goals in the distributed 

*	http://sites.google.com/.
†	 http://wordpress.org/.
‡	 http://www.blogger.com/.
§	 http://www.livejournal.com/.
¶	 http://www.facebook.com/.
**	http://www.flickr.com/.
††	http://www.youtube.com/.
‡‡	http://www.zoho.com/.
§§	http://www.linkedin.com/.
¶¶	http://www.facebook.com/press/info.php?statistics.
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289An Overview of the NoSQL World

data management world. In particular, when the application load increases, there are 
two main options for achieving scalability at the database tier that enables the appli-
cations to cope with more client requests (Figure 9.1) as follows:

	 1.	Scaling up: aims at allocating a bigger machine to act as database servers.
	 2.	Scaling out: aims at replicating and partitioning data across more machines.

In fact, the scaling up option has the main drawback that large machines are often 
very expensive and eventually a physical limit is reached where a more powerful 
machine cannot be purchased at any cost. Alternatively, it is both extensible and 
economical–especially in a dynamic workload environment–to scale out by add-
ing storage space or buying another commodity server, which fits well with the new 
pay-as-you-go philosophy of cloud computing.

Recently, a new generation of low-cost, high-performance database software has 
emerged to challenge the dominance of relational database management systems. A 
big reason for this movement, named as NoSQL (Not Only SQL), is that different 
implementations of web, enterprise, and cloud computing applications have different 
database requirements (e.g., not every application requires rigid data consistency). 
For example, for high-volume web sites (e.g., eBay, Amazon, Twitter, Facebook), 
scalability and high availability are essential requirements that cannot be compro-
mised. For these applications, even the slightest outage can have significant financial 
consequences and impacts customers’ trust.

In general, the CAP theorem [15,34] and the PACELC model [1] describe the 
existence of direct tradeoffs between consistency and availability as well as con-
sistency and latency. For example, the CAP theorem shows that a distributed data-
base system can only choose at most two out of three properties: Consistency, 
Availability, and tolerance to Partitions. Therefore, there is a plethora of alterna-
tive consistency models, which have been introduced for offering different per-
formance tradeoffs such as session guarantees, causal consistency [7], causal+ 
consistency [48], and parallel snapshot isolation [57]. In practice, the new wave of 

Scale up

Scaling up: run your solution on bigger server

Scale out

Scaling out: run your solution on several servers

FIGURE 9.1  Database scalability options.
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290 Large Scale and Big Data

NoSQL systems decided to compromise on the strict consistency requirement. In 
particular, they apply a relaxed consistency policy called eventual consistency [63], 
which guarantees that if no new updates are made to a replicated object, eventually 
all accesses will return the last updated value. If no failures occur, the maximum 
size of the inconsistency window can be determined based on factors such as com-
munication delays, the load on the system, and the number of replicas involved in 
the replication scheme. In particular, these new NoSQL systems have a number of 
design features in common:

•	 The ability to horizontally scale out throughput over many servers.
•	 A simple call level interface or protocol (in contrast to a SQL binding).
•	 Supporting weaker consistency models in contrast to ACID guaranteed 

properties for transactions in most traditional RDBMS. These models 
are usually referred to as BASE models (Basically Available, Soft state, 
Eventually consistent) [53].

•	 Efficient use of distributed indexes and RAM for data storage.
•	 The ability to dynamically define new attributes or data schema.

These design features are made to achieve the following system goals:

•	 Availability: They must always be accessible even during network failure or 
a whole datacenter going offline.

•	 Scalability: They must be able to support very large databases with very 
high request rates at very low latency.

•	 Elasticity: They must be able to satisfy changing application requirements 
in both directions (scaling up or scaling down). Moreover, the system must 
be able to gracefully respond to these changing requirements and quickly 
recover its steady state.

•	 Load balancing: They must be able to automatically move load between 
servers so that most of the hardware resources are effectively utilized and 
to avoid any resource overloading situations.

•	 Fault tolerance: They must be able to deal with the situation that the 
rarest hardware problems go from being freak events to eventualities. 
While hardware failure is still a serious concern, this concern needs to 
be addressed at the architectural level of the database, rather than requir-
ing developers, administrators, and operations staff to build their own 
redundant solutions.

•	 Ability to run in a heterogeneous environment: On scaling out environ-
ment, there is a strong trend toward increasing the number of nodes that 
participate in query execution. It is nearly impossible to get homogeneous 
performance across hundreds or thousands of compute nodes. Part failures 
that do not cause complete node failure, but result in degraded hardware 
performance become more common at scale. Hence, the system should be 
designed to run in a heterogeneous environment and must take appropriate 
measures to prevent performance degradation that are due to parallel pro-
cessing on distributed nodes.
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291An Overview of the NoSQL World

This chapter explores the recent advancements and the new approaches of the web-
scale data management. We discuss the advantages and the disadvantages of each 
approach and its suitability to support certain class of applications and end users. Section 
9.2 describes the NoSQL systems that are introduced and used internally in the key 
players: Google, Yahoo, and Amazon, respectively. Section 9.3 provides an overview of 
a set of open-source projects, which have been designed following the main principles 
of the NoSQL systems. Section 9.4 discusses the notion of providing database manage-
ment as a service and gives an overview of the main representative systems and their 
challenges. The web-scale data management tradeoffs and open research challenges are 
discussed in Section 9.5 before we conclude the chapter in Section 9.7.

9.2 �N oSQL KEY SYSTEMS

This section provides an overview of the main NoSQL systems which has been intro-
duced and used internally by three of the key players in the web-scale data manage-
ment domain: Google, Yahoo, and Amazon.

9.2.1 � Google: Bigtable

Bigtable is a distributed storage system for managing structured data that is designed 
to scale to a very large size (petabytes of data) across thousands of commodity serv-
ers [21]. It has been used by more than 60 Google products and projects such as 
Google search engine,* Google Finance,† Orkut,‡ Google Docs,§ and Google Earth.¶ 
These products use Bigtable for a variety of demanding workloads, which range 
from throughput-oriented batch-processing jobs to latency-sensitive serving of data 
to end users. The Bigtable clusters used by these products span a wide range of con-
figurations, from a handful to thousands of servers, and store up to several hundred 
terabytes of data.

Bigtable does not support a full relational data model. However, it provides clients 
with a simple data model that supports dynamic control over data layout and format. In 
particular, a Bigtable is a sparse, distributed, persistent multidimensional sorted map. 
The map is indexed by a row key, column key, and a timestamp. Each value in the 
map is an uninterpreted array of bytes. Thus, clients usually need to serialize various 
forms of structured and semistructured data into these strings. A concrete example that 
reflects some of the main design decisions of Bigtable is the scenario of storing a copy 
of a large collection of web pages into a single table. Figure 9.2 illustrates an example 
of this table where URLs are used as row keys and various aspects of web pages as 
column names. The contents of the web pages are stored in a single column that stores 
multiple versions of the page under the timestamps when they were fetched.

The row keys in a table are arbitrary strings where every read or write of data 
under a single row key is atomic. Bigtable maintains the data in lexicographic order 

*	http://www.google.com/.
†	 http://www.google.com/finance.
‡	 http://www.orkut.com/.
§	 http://docs.google.com/.
¶	 http://earth.google.com/.
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292 Large Scale and Big Data

by row key where the row range for a table is dynamically partitioned. Each row 
range is called a tablet, which represents the unit of distribution and load balancing. 
Thus, reads of short row ranges are efficient and typically require communication 
with only a small number of machines. Bigtables can have an unbounded number of 
columns that are grouped into sets called column families. These column families 
represent the basic unit of access control. Each cell in a Bigtable can contain multiple 
versions of the same data that are indexed by their timestamps. Each client can flex-
ibly decide the number of n versions of a cell that need to be kept. These versions are 
stored in decreasing timestamp order so that the most recent versions can be always 
read first.

The Bigtable API provides functions for creating and deleting tables and column 
families. It also provides functions for changing cluster, table, and column family 
metadata, such as access control rights. Client applications can write or delete values 
in Bigtable, look up values from individual rows, or iterate over a subset of the data 
in a table. At the transaction level, Bigtable supports only single-row transactions, 
which can be used to perform atomic read–modify–write sequences on data stored 
under a single row key (i.e., no general transactions across row keys).

At the physical level, Bigtable uses the distributed Google File System (GFS) 
[33] to store log, and data files. The Google SSTable file format is used internally 
to store Bigtable data. An SSTable provides a persistent, ordered immutable map 
from keys to values, where both keys and values are arbitrary byte strings. Bigtable 
relies on a distributed lock service called Chubby [17], which consists of five active 
replicas, one of which is elected to be the master and actively serves requests. The 
service is live when a majority of the replicas are running and can communicate 
with each other. Bigtable uses Chubby for a variety of tasks such as (1) ensuring 
that there is at most one active master at any time, (2) storing the bootstrap location 
of Bigtable data, (3) storing Bigtable schema information and to the access control 
lists. The main limitation of this design is that if Chubby becomes unavailable for an 
extended period of time, the whole Bigtable becomes unavailable. At the runtime, 
each Bigtable is allocated to one master server and many tablet servers, which can be 
dynamically added (or removed) from a cluster based on the changes in workloads. 
The master server is responsible for assigning tablets to tablet servers, balancing tablet-
server load, and garbage collection of files in GFS. In addition, it handles schema 
changes such as table and column family creations. Each tablet server manages a set 
of tablets. The tablet server handles read and write requests to the tablets that it has 
loaded, and also splits tablets that have grown too large.

“CNN.com”“CNN”
“<html>...”

“<html>...”
“<html>...”

t9
t6

t3t5
t8

“anchor:cnnsi.com”

“com.cnn.www”

“anchor:my.look.ca”“contents”:

FIGURE 9.2  Sample Bigtable structure. (From F. Chang et al., ACM Trans. Comput. Syst., 
26, 2008.)
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9.2.2 � Yahoo: PNUTS

The PNUTS system (renamed later to Sherpa) is a massive-scale hosted database 
system that is designed to support Yahoo!s web applications [25,56]. The main focus 
of the system is on data serving for web applications, rather than complex queries. It 
relies on a simple relational model where data is organized into tables of records with 
attributes. In addition to typical data types, blob is a main valid data type, which 
allows arbitrary structures to be stored inside a record, but not necessarily large 
binary objects like images or audio. The PNUTS system does not enforce constraints 
such as referential integrity on the underlying data. Therefore, the schema of these 
tables are flexible where new attributes can be added at any time without halting any 
query or update activity. In addition, it is not required that each record have values 
for all attributes.

Figure 9.3 illustrates the system architecture of PNUTS. The system is divided 
into regions where each region contains a full complement of system components 
and a complete copy of each table. Regions are typically, but not necessarily, geo-
graphically distributed. Therefore, at the physical level, data tables are horizontally 
partitioned into groups of records called tablets. These tablets are scattered across 
many servers where each server might have hundreds or thousands of tablets. The 
assignment of tablets to servers is flexible in a way that allows balancing the work-
loads by moving a few tablets from an overloaded server to an underloaded server.

The query language of PNUTS supports selection and projection from a single 
table. Operations for updating or deleting existing records must specify the primary 
key. The system is designed primarily for online serving workloads that consist 
mostly of queries that read and write single records or small groups of records. Thus, 
it provides a multiget operation that supports retrieving multiple records in parallel 
by specifying a set of primary keys and an optional predicate. The router component 
(Figure 9.3) is responsible of determining which storage unit needs to be accessed for 
a given record to be read or written by the client. Therefore, the primary-key space 
of a table is divided into intervals where each interval corresponds to one tablet. 
The router stores an interval mapping that defines the boundaries of each tablet and 
maps each tablet to a storage unit. The query model of PNUTS does not support join 
operations that are too expensive in such massive scale systems.

Tablet
controller

Tablet
controller

Region 1

Message
broker

RoutersRouters

Region 2

Storage units Storage units

FIGURE 9.3  PNUTS system architecture. (From B. F. Cooper et al., PVLDB, 1, 1277–1288, 
2008.)
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The PNUTS system does not have a traditional database log or archive data. 
However, it relies on a pub/submechanism that act as a redo log for replaying updates 
that are lost before being applied to disk due to failure. In particular, PNUTS pro-
vides a consistency model that is between the two extremes of general serializability 
and eventual consistency [63]. The design of this model is derived from the observa-
tion that web applications typically manipulate one record at a time while different 
records may have activity with different geographic locality. Thus, it provides per-
record timeline consistency where all replicas of a given record apply all updates 
to the record in the same order. In particular, for each record, one of the replicas 
(independently) is designated as the master where all updates to that record are for-
warded to the master. The master replica for a record is adaptively changed to suit the 
workload where the replica receiving the majority of write requests for a particular 
record is selected to be the master for that record. Relying on the per-record timeline 
consistency model, the PNUTS system supports the following range of API calls 
with varying levels of consistency guarantees

•	 Read-any: This call has a lower latency as it returns a possibly stale version 
of the record.

•	 Read-critical (required version): This call returns a version of the record 
that is strictly newer than or the same as the required version.

•	 Read-latest: This call returns the latest copy of the record that reflects all 
writes that have succeeded. It is expected that the read-critical and read-
latest can have a higher latency than read-any if the local copy is too stale 
and the system needs to locate a newer version at a remote replica.

•	 Write: This call gives the same ACID guarantees as a transaction with a 
single write operation in it (e.g., blind writes).

•	 Test-and-set-write (required version): This call performs the requested 
write to the record if and only if the present version of the record is the same 
as the required version. This call can be used to implement transactions that 
first read a record, and then do a write to the record based on the read, e.g., 
incrementing the value of a counter.

Since the system is designed to scale to cover several worldwide replicas, auto-
mated failover, and load balancing is the only way to manage the operations load. 
Therefore, for any failed server, the system automatically recovers by copying data 
from a replica to other live servers.

9.2.3 �A mazon: Dynamo

Amazon runs a worldwide e-commerce platform that serves tens of millions custom-
ers at peak times using tens of thousands of servers located in many data centers 
around the world. In this environment, there are strict operational requirements on 
Amazon’s platform in terms of performance, reliability, and efficiency, and to support 
Amazon’s continuous growth the platform needs to be highly scalable. Reliability is 
one of the most important requirements because even the slightest outage has signifi-
cant financial consequences and impacts customer trust.
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The Dynamo system [30] is a highly available and scalable distributed key/value-
based datastore built for supporting internal Amazon’s applications. Dynamo is used 
to manage the state of services that have very high reliability requirements and need 
tight control over the tradeoffs among availability, consistency, cost-effectiveness, 
and performance. There are many services on Amazons platform that only need 
primary-key access to a data store. The common pattern of using a relational data-
base would lead to inefficiencies and limit the ability to scale and provide high avail-
ability. Thus, Dynamo provides a simple primary-key-only interface to meet the 
requirements of these applications. The query model of the Dynamo system relies on 
simple read and write operations to a data item that is uniquely identified by a key. 
State is stored as binary objects (blobs) identified by unique keys. No operations span 
multiple data items.

Dynamo’s partitioning scheme relies on a variant of consistent hashing mecha-
nisms [39] to distribute the load across multiple storage hosts. In this mechanism, 
the output range of a hash function is treated as a fixed circular space or ring (i.e., 
the largest hash value wraps around to the smallest hash value). Each node in the 
system is assigned a random value within this space, which represents its position 
on the ring. Each data item identified by a key is assigned to a node by hashing the 
data item’s key to yield its position on the ring, and then walking the ring clock-
wise to find the first node with a position larger than the item’s position. Thus, each 
node becomes responsible for the region in the ring between it and its predecessor 
node on the ring. The principle advantage of consistent hashing is that departure 
or arrival of a node only affects its immediate neighbors and other nodes remain 
unaffected.

In the Dynamo system, each data item is replicated at N hosts where N is a param-
eter configured per-instance. Each key k is assigned to a coordinator node. The coor-
dinator is in charge of the replication of the data items that fall within its range. In 
addition to locally storing each key within its range, the coordinator replicates these 
keys at the (N − 1) clockwise successor nodes in the ring. This results in a system 
where each node is responsible for the region of the ring between it and its Nth pre-
decessor. As illustrated in Figure 9.4, node B replicates the key k at nodes C and D 

A

B

C

DE

F

G

Key K

Nodes B, C,
and D store

keys in
range (A, B)
including K.

FIGURE 9.4  Partitioning and replication of keys in the Dynamo ring. (From G. DeCandia 
et al., Dynamo: Amazon’s highly available key-value store, in SOSP, pp. 205–220, 2007.)
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in addition to storing it locally. Node D will store the keys that fall in the ranges (A, 
B), (B, C), and (C, D). The list of nodes that is responsible for storing a particular key 
is called the preference list. The system is designed so that every node in the system 
can determine which nodes should be in this list for any particular key.

9.3 �N oSQL OPEN SOURCE PROJECTS

In practice, most NoSQL data management systems that are introduced by the key 
players (e.g., Bigtable, Dynamo, PNUTS) are meant for their internal use only and 
are thus, not available for public users. Therefore, many open-source projects have 
been built to implement the concepts of these systems and make it available for 
public users [18,54]. Due to the ease in which they can be downloaded and installed, 
these systems have attracted a lot of interest from the research community. There are 
not many details that have been published about the implementation of most of these 
systems. In general, the NoSQL open-source projects can be broadly classified into 
the following categories:

•	 Key-value stores: These systems use the simplest data model, which is a 
collection of objects where each object has a unique key and a set of attri-
bute/value pairs.

•	 Document stores: These systems have the data models that consists of 
objects with a variable number of attributes with a possibility of having 
nested objects.

•	 Extensible record stores: They provide variable-width tables (Column 
Families) that can be partitioned vertically and horizontally across multiple 
nodes.

Here, we give a brief introduction about some of these projects. For the full list, 
we refer the reader to the NoSQL database website.*

Cassandra† is presented as a highly scalable, eventually consistent, distributed, 
structured key-value store [44,45]. It was open-sourced by Facebook in 2008. It 
is designed by Avinash Lakshman (one of the authors of Amazon’s Dynamo) and 
Prashant Malik (Facebook engineer). Cassandra brings together the distributed 
systems technologies from Dynamo and the data model from Google’s Bigtable. 
Like Dynamo, Cassandra is eventually consistent. Like Bigtable, Cassandra pro-
vides a column family-based data model richer than typical key/value systems. 
In Cassandra’s data model, column is the lowest/smallest increment of data. It is 
a tuple (triplet) that contains a name, a value, and a timestamp. A column family 
is a container for columns, analogous to the table in a relational system. It con-
tains multiple columns, each of which has a name, value, and a timestamp, and 
are referenced by row keys. A keyspace is the first dimension of the Cassandra 
hash, and is the container for column families. Keyspaces are of roughly the same 
granularity as a schema or database (i.e., a logical collection of tables) in RDBMS. 

*	http://NoSQL-database.org/.
†	 http://cassandra.apache.org/.

Buy this book at http://www.crcpress.com/product/isbn/9781466581500



297An Overview of the NoSQL World

They can be seen as a namespace for ColumnFamilies and is typically allocated 
as one per application. SuperColumns represent columns that themselves have 
subcolumns (e.g., Maps). Like Dynamo, Cassandra provides a tunable consistency 
model that allows the ability to choose the consistency level that is suitable for a 
specific application. For example, it allows to choose how many acknowledgments 
are required to be received from different replicas before considering a WRITE 
operation to be successful. Similarly, the application can choose how many suc-
cessful responses need to be received in the case of READ before returning the 
result to the client. In particular, every write operation can choose one of the fol-
lowing consistency levels:

	 a.	ZERO: It ensures nothing. The write operation will be executed asynchro-
nously in the system background.

	 b.	ANY: It ensures that the write operation has been executed in at least one 
node.

	 c.	ONE: It ensures that the write operation has been committed to at least 1 
replica before responding to the client.

	 d.	QUORUM: It ensures that the write has been executed on (N/2 + 1) repli-
cas before responding to the client where N is the total number of system 
replicas.

	 e.	ALL: It ensures that the write operation has been committed to all N repli-
cas before responding to the client.

On the other hand, every read operation can choose one of the following available 
consistency levels:

	 a.	ONE: It will return the record of the first responding replica.
	 b.	QUORUM: It will query all replicas and return the record with the most 

recent timestamp once it has at least a majority of replicas (N/2 + 1) reported.
	 c.	ALL: It will query all replicas and return the record with the most recent 

timestamp once all replicas have replied.

Therefore, any unresponsive replicas will fail the read operation. For read opera-
tions, in the ONE and QUORUM consistency levels, a consistency check is always 
done with the remaining replicas in the system background to fix any consistency 
issues.

HBase* is another project is based on the ideas of Bigtable system. It uses the 
Hadoop distributed filesystem (HDFS)† as its data storage engine. The advantage 
of this approach is that HBase does not need to worry about data replication, data 
consistency, and resiliency because HDFS already considers and deals with them. 
However, the downside is that it becomes constrained by the characteristics of HDFS, 
which is that it is not optimized for random read access. In the HBase architecture, 
data is stored in a farm of Region Servers. A key-to-server mapping is used to locate 

*	http://hbase.apache.org/.
†	 http://hadoop.apache.org/hdfs/.
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the corresponding server. The in-memory data storage is implemented using a dis-
tributed memory object caching system called Memcache,* while the on-disk data 
storage is implemented as a HDFS file residing in the Hadoop data node server.

The HyperTable† project is designed to achieve a high performance, scalable, dis-
tributed storage, and processing system for structured and unstructured data. It is 
designed to manage the storage and processing of information on a large cluster of 
commodity servers, providing resilience to machine and component failures. Like 
HBase, Hypertable also runs over HDFS to leverage the automatic data replication, 
and fault tolerance that it provides. In HyperTable, data is represented in the system 
as a multidimensional table of information. The HyperTable systems provides a low-
level API and Hypertable Query Language (HQL) that provides the ability to create, 
modify, and query the underlying tables. The data in a table can be transformed and 
organized at high speed by performing computations in parallel, pushing them to 
where the data is physically stored.

CouchDB‡ is a document-oriented database that is written in Erlang and can be 
queried and indexed in a MapReduce fashion using JavaScript. In CouchDB, docu-
ments are the primary unit of data. A CouchDB document is an object that consists 
of named fields. Field values may be strings, numbers, dates, or even ordered lists 
and associative maps. Hence, a CouchDB database is a flat collection of documents 
where each document is identified by a unique ID. CouchDB provides a RESTful 
HTTP API for reading and updating (add, edit, delete) database documents. The 
CouchDB document update model is lockless and optimistic. Document edits are 
made by client applications. If another client was editing the same document at the 
same time, the client gets an edit conflict error on save. To resolve the update con-
flict, the latest document version can be opened, the edits reapplied, and the update 
retried again. Document updates are all or nothing, either succeeding entirely or 
failing completely. The database never contains partially saved or edited documents.

MongoDB§ is another example of distributed schema-free document-oriented 
database, which is created at 10gen.¶ It is implemented in C++ but provides drivers 
for a number of programming languages including C, C++, Erlang. Haskell, Java, 
JavaScript, Perl, PHP, Python, Ruby, and Scala. It also provides a JavaScript 
command-line interface. MongoDB stores documents as BSON (Binary JSON), 
which are binary encoded JSON like objects. BSON supports nested object struc-
tures with embedded objects and arrays. At the heart of MongoDB is the concept 
of a document that is represented as an ordered set of keys with associated values. 
A collection is a group of documents. If a document is the MongoDB analog of a 
row in a relational database, then a collection can be thought of as the analog to a 
table. Collections are schema-free. This means that the documents within a single 
collection can have any number of different shapes. MongoDB groups collections 
into databases. A single instance of MongoDB can host several databases, each of 
which can be thought of as completely independent. It provides eventual consistency 

*	http://memcached.org/.
†	 http://hypertable.org/.
‡	 http://couchdb.apache.org/.
§	 http://www.mongodb.org/.
¶	 http://www.10gen.com/.
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guarantees in a way that a process could read an old version of a document even if 
another process has already performed an update operation on it. In addition, it pro-
vides no transaction management so that if a process reads a document and writes a 
modified version back to the database, there is a possibility that another process may 
write a new version of the same document between the read and the write operation 
of the first process. MongoDB supports indexing the documents on multiple fields. In 
addition, it provides a very rich API interface that supports different batch operations 
and aggregate functions.

Many other variant projects have followed the NoSQL movement and support 
different types of data stores such as key-value stores (e.g., Voldemort,* Dynomite†), 
document stores (e.g., Riak‡), and graph stores (e.g., Neo4j,§ DEX¶).

9.4 � DATABASE-AS-A-SERVICE

Multitenancy, a technique which is pioneered by salesforce.com,** is an optimization 
mechanism for hosted services in which multiple customers are consolidated onto the 
same operational system and thus the economy of scale principles help to effectively 
drive down the cost of computing infrastructure. In particular, multitenancy allows 
pooling of resources that improves utilization by eliminating the need to provision 
each tenant for their maximum load. Therefore, multitenancy is an attractive mecha-
nism for both of the service providers who are able to serve more customers with a 
smaller set of machines, and also to customers of these services who do not need to 
pay the price of renting the full capacity of a server. Database-as-a-service (DaaS) is 
a new paradigm for data management in which a third–party service provider hosts a 
database as a service [3,37]. The service provides data management for its customers 
and thus alleviates the need for the service user to purchase expensive hardware and 
software, deal with software upgrades, and hire professionals for administrative and 
maintenance tasks. Since using an external database service promises reliable data 
storage at a low cost, it represents a very attractive solution for companies especially 
that of startups. In this section, we give an overview of the state-of-the-art of differ-
ent options of DaaS from the key players Google, Amazon, and Microsoft.

9.4.1 � Google Datastore

Google has released the Google AppEngine datastore,†† which provides a scalable sche-
maless object data storage for web application. It performs queries over data objects, 
known as entities. An entity has one or more properties where one property can be a 
reference to another entity. Datastore entities are schemaless where two entities of the 
same kind are not obligated to have the same properties, or use the same value types 

*	http://project-voldemort.com/.
†	 http://wiki.github.com/cliffmoon/dynomite/dynomite-framework.
‡	 http://wiki.basho.com/display/RIAK/Riak.
§	 http://neo4j.org/.
¶	 http://www.dama.upc.edu/technology-transfer/dex.
**	 http://www.salesforce.com/.
††	http://code.google.com/appengine/docs/python/datastore/.
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