
61

C H A P T E R

3

Cloud Computing Software
Security Fundamentals

People don’t ever seem to realize that doing what’s right is no guarantee
against misfortune.

—William McFee

Security is a principal concern when entrusting an organization’s critical infor-
mation to geographically dispersed cloud platforms not under the direct control
of that organization. In addition to the conventional IT information system
security procedures, designing security into cloud software during the software
development life cycle can greatly reduce the cloud attack surface.

In the document “Security Guidance for Critical Areas of Focus in Cloud
Computing,”1 the Cloud Security Alliance emphasizes the following points rela-
tive to the secure software life cycle in their listing of 15 cloud security domains:

 n Domain 6, Information Life Cycle Management — “Understand cloud
provider policies and processes for data retention and destruction and
how they compare with internal organizational policy. Be aware that data
retention assurance may be easier for the cloud provider to demonstrate,
but data destruction may be very diffi cult. Perform regular backup and
recovery tests to assure that logical segregation and controls are effective.”

 n Domain 11, Application Security — “IaaS, PaaS and SaaS create differing
trust boundaries for the software development lifecycle, which must be
accounted for during the development, testing and production deploy-
ment of applications.”

 n Domain 14, Storage — “Understand cloud provider storage retirement pro-
cesses. Data destruction is extremely diffi cult in a multi-tenant environment

c03.indd 61c03.indd 61 6/24/2010 7:40:54 AM6/24/2010 7:40:54 AM

62 Chapter 3 n Cloud Computing Software Security Fundamentals

and the cloud provider should be utilizing strong storage encryption that
renders data unreadable when storage is recycled, disposed of, or accessed
by any means outside of authorized applications.”

With cloud computing providing SaaS, secure software is a critical issue. From
the cloud consumer’s point of view, using SaaS in the cloud reduces the need for
secure software development by the customer. The requirement for secure soft-
ware development is transferred to the cloud provider. However, the user might
still fi nd it necessary to develop custom code for the cloud. Whoever develops
the software, this process requires a strong commitment to a formal, secure
software development life cycle, including design, testing, secure deployment,
patch management, and disposal. Yet, in many instances, software security is
treated as an add-on to extant software and not as an important element of the
development process.

These and other related issues in the secure software development life cycle
for cloud computing are explored in detail in this chapter.

Cloud Information Security Objectives

Developing secure software is based on applying the secure software design
principles that form the fundamental basis for software assurance. Software
assurance has been given many defi nitions, and it is important to understand
the concept. The Software Security Assurance Report2 defi nes software assurance
as “the basis for gaining justifi able confi dence that software will consistently
exhibit all properties required to ensure that the software, in operation, will
continue to operate dependably despite the presence of sponsored (intentional)
faults. In practical terms, such software must be able to resist most attacks, toler-
ate as many as possible of those attacks it cannot resist, and contain the damage
and recover to a normal level of operation as soon as possible after any attacks
it is unable to resist or tolerate.”

The U.S. Department of Defense (DoD) Software Assurance Initiative3 defi nes
software assurance as “the level of confi dence that software functions as intended
and is free of vulnerabilities, either intentionally or unintentionally designed
or inserted as part of the software.”

The Data and Analysis Center for Software (DACS)4 requires that software
must exhibit the following three properties to be considered secure:

 n Dependability — Software that executes predictably and operates correctly
under a variety of conditions, including when under attack or running
on a malicious host

 n Trustworthiness — Software that contains a minimum number of
vulnerabilities or no vulnerabilities or weaknesses that could sabo-
tage the software’s dependability. It must also be resistant to malicious
logic.

c03.indd 62c03.indd 62 6/24/2010 7:40:55 AM6/24/2010 7:40:55 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 63

 n Survivability (Resilience) — Software that is resistant to or tolerant of
attacks and has the ability to recover as quickly as possible with as little
harm as possible

Seven complementary principles that support information assurance are
confi dentiality, integrity, availability, authentication, authorization, auditing,
and accountability. These concepts are summarized in the following sections.

Confi dentiality, Integrity, and Availability
Confi dentiality, integrity, and availability are sometimes known as the CIA triad of
information system security, and are important pillars of cloud software assurance.

Confi dentiality

Confi dentiality refers to the prevention of intentional or unintentional unauthor-
ized disclosure of information. Confi dentiality in cloud systems is related to the
areas of intellectual property rights, covert channels, traffi c analysis, encryp-
tion, and inference:

 n Intellectual property rights — Intellectual property (IP) includes
inventions, designs, and artistic, musical, and literary works. Rights to
intellectual property are covered by copyright laws, which protect cre-
ations of the mind, and patents, which are granted for new inventions.

 n Covert channels — A covert channel is an unauthorized and unintended
communication path that enables the exchange of information. Covert chan-
nels can be accomplished through timing of messages or inappropriate
use of storage mechanisms.

 n Traffi c analysis — Traffi c analysis is a form of confi dentiality breach that can
be accomplished by analyzing the volume, rate, source, and destination of
message traffi c, even if it is encrypted. Increased message activity and high
bursts of traffi c can indicate a major event is occurring. Countermeasures
to traffi c analysis include maintaining a near-constant rate of message
traffi c and disguising the source and destination locations of the traffi c.

 n Encryption — Encryption involves scrambling messages so that they can-
not be read by an unauthorized entity, even if they are intercepted. The
amount of effort (work factor) required to decrypt the message is a function
of the strength of the encryption key and the robustness and quality of the
encryption algorithm.

 n Inference — Inference is usually associated with database security. Inference
is the ability of an entity to use and correlate information protected at
one level of security to uncover information that is protected at a higher
security level.

c03.indd 63c03.indd 63 6/24/2010 7:40:55 AM6/24/2010 7:40:55 AM

64 Chapter 3 n Cloud Computing Software Security Fundamentals

Integrity

The concept of cloud information integrity requires that the following three
principles are met:

 n Modifi cations are not made to data by unauthorized personnel or processes.

 n Unauthorized modifi cations are not made to data by authorized person-
nel or processes.

 n The data is internally and externally consistent — in other words, the
internal information is consistent both among all sub-entities and with
the real-world, external situation.

Availability

Availability ensures the reliable and timely access to cloud data or cloud com-
puting resources by the appropriate personnel. Availability guarantees that
the systems are functioning properly when needed. In addition, this concept
guarantees that the security services of the cloud system are in working order.
A denial-of-service attack is an example of a threat against availability.

The reverse of confi dentiality, integrity, and availability is disclosure, altera-
tion, and destruction (DAD).

Cloud Security Services

Additional factors that directly affect cloud software assurance include authen-
tication, authorization, auditing, and accountability, as summarized in the
following sections.

Authentication
Authentication is the testing or reconciliation of evidence of a user’s identity. It
establishes the user’s identity and ensures that users are who they claim to be.
For example, a user presents an identity (user ID) to a computer login screen and
then has to provide a password. The computer system authenticates the user by
verifying that the password corresponds to the individual presenting the ID.

Authorization
Authorization refers to rights and privileges granted to an individual or process
that enable access to computer resources and information assets. Once a user’s

c03.indd 64c03.indd 64 6/24/2010 7:40:55 AM6/24/2010 7:40:55 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 65

identity and authentication are established, authorization levels determine the
extent of system rights a user can hold.

Auditing
To maintain operational assurance, organizations use two basic methods: system
audits and monitoring. These methods can be employed by the cloud customer,
the cloud provider, or both, depending on asset architecture and deployment.

 n A system audit is a one-time or periodic event to evaluate security.

 n Monitoring refers to an ongoing activity that examines either the system
or the users, such as intrusion detection.

Information technology (IT) auditors are often divided into two types: internal
and external. Internal auditors typically work for a given organization, whereas
external auditors do not. External auditors are often certifi ed public accountants
(CPAs) or other audit professionals who are hired to perform an independent
audit of an organization’s fi nancial statements. Internal auditors usually have a
much broader mandate than external auditors, such as checking for compliance
and standards of due care, auditing operational cost effi ciencies, and recom-
mending the appropriate controls.

IT auditors typically audit the following functions:

 n System and transaction controls

 n Systems development standards

 n Backup controls

 n Data library procedures

 n Data center security

 n Contingency plans

In addition, IT auditors might recommend improvements to controls, and
they often participate in a system’s development process to help an organization
avoid costly reengineering after the system’s implementation.

An audit trail or log is a set of records that collectively provide documentary
evidence of processing, used to aid in tracing from original transactions forward
to related records and reports, and/or backward from records and reports to
their component source transactions. Audit trails may be limited to specifi c
events or they may encompass all of the activities on a system.

Audit logs should record the following:

 n The transaction’s date and time

 n Who processed the transaction

c03.indd 65c03.indd 65 6/24/2010 7:40:55 AM6/24/2010 7:40:55 AM

66 Chapter 3 n Cloud Computing Software Security Fundamentals

 n At which terminal the transaction was processed

 n Various security events relating to the transaction

In addition, an auditor should examine the audit logs for the following:

 n Amendments to production jobs

 n Production job reruns

 n Computer operator practices

 n All commands directly initiated by the user

 n All identifi cation and authentication attempts

 n Files and resources accessed

Accountability
Accountability is the ability to determine the actions and behaviors of a single
individual within a cloud system and to identify that particular individual. Audit
trails and logs support accountability and can be used to conduct postmortem
studies in order to analyze historical events and the individuals or processes asso-
ciated with those events. Accountability is related to the concept of nonrepudiation,
wherein an individual cannot successfully deny the performance of an action.

Relevant Cloud Security Design Principles

Historically, computer software was not written with security in mind; but
because of the increasing frequency and sophistication of malicious attacks
against information systems, modern software design methodologies include
security as a primary objective. With cloud computing systems seeking to meet
multiple objectives, such as cost, performance, reliability, maintainability, and
security, trade-offs have to be made. A completely secure system will exhibit
poor performance characteristics or might not function at all.

Technically competent hackers can usually fi nd a way to break into a computer
system, given enough time and resources. The goal is to have a system that is
secure enough for everyday use while exhibiting reasonable performance and
reliability characteristics.

In a 1974 paper that is still relevant today,5 Saltzer and Schroeder of
the University of Virginia addressed the protection of information stored in
a computer system by focusing on hardware and software issues that are
necessary to support information protection. The paper presented the following
11 security design principles:

 n Least privilege

 n Separation of duties

c03.indd 66c03.indd 66 6/24/2010 7:40:55 AM6/24/2010 7:40:55 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 67

 n Defense in depth

 n Fail safe

 n Economy of mechanism

 n Complete mediation

 n Open design

 n Least common mechanism

 n Psychological acceptability

 n Weakest link

 n Leveraging existing components

The fundamental characteristics of these principles are summarized in the
following sections.

Least Privilege
The principle of least privilege maintains that an individual, process, or other
type of entity should be given the minimum privileges and resources for the
minimum period of time required to complete a task. This approach reduces
the opportunity for unauthorized access to sensitive information.

Separation of Duties
Separation of duties requires that completion of a specifi ed sensitive activity or
access to sensitive objects is dependent on the satisfaction of a plurality of condi-
tions. For example, an authorization would require signatures of more than one
individual, or the arming of a weapons system would require two individuals
with different keys. Thus, separation of duties forces collusion among entities
in order to compromise the system.

Defense in Depth
Defense in depth is the application of multiple layers of protection wherein a
subsequent layer will provide protection if a previous layer is breached.

The Information Assurance Technical Framework Forum (IATFF), an orga-
nization sponsored by the National Security Agency (NSA), has produced a
document titled the “Information Assurance Technical Framework” (IATF) that
provides excellent guidance on the concepts of defense in depth.

The IATFF encourages and supports technical interchanges on the topic
of information assurance among U.S. industry, U.S. academic institutions, and
U.S. government agencies. Information on the IATFF document can be found
at www.niap-ccevs.org/cc-scheme/IATF_3.1-Chapter_03-ISSEP.pdf.

c03.indd 67c03.indd 67 6/24/2010 7:40:55 AM6/24/2010 7:40:55 AM

68 Chapter 3 n Cloud Computing Software Security Fundamentals

The IATF document 3.16 stresses the importance of the people involved, the
operations required, and the technology needed to provide information assurance
and to meet the organization’s mission.

The defense-in-depth strategy as defi ned in IATF document 3.1 promotes
application of the following information assurance principles:

 n Defense in multiple places — Information protection mechanisms placed
in a number of locations to protect against internal and external threats

 n Layered defenses — A plurality of information protection and detection
mechanisms employed so that an adversary or threat must negotiate a
series of barriers to gain access to critical information

 n Security robustness — An estimate of the robustness of information assur-
ance elements based on the value of the information system component to
be protected and the anticipated threats

 n Deploy KMI/PKI — Use of robust key management infrastructures (KMI)
and public key infrastructures (PKI)

 n Deploy intrusion detection systems — Application of intrusion detection
mechanisms to detect intrusions, evaluate information, examine results,
and, if necessary, take action

Fail Safe
Fail safe means that if a cloud system fails it should fail to a state in which the
security of the system and its data are not compromised. One implementation
of this philosophy would be to make a system default to a state in which a user
or process is denied access to the system. A complementary rule would be to
ensure that when the system recovers, it should recover to a secure state and
not permit unauthorized access to sensitive information. This approach is based
on using permissions instead of exclusions.

In the situation where system recovery is not done automatically, the failed
system should permit access only by the system administrator and not by other
users, until security controls are reestablished.

Economy of Mechanism
Economy of mechanism promotes simple and comprehensible design and imple-
mentation of protection mechanisms, so that unintended access paths do not
exist or can be readily identifi ed and eliminated.

Complete Mediation
In complete meditation, every request by a subject to access an object in a com-
puter system must undergo a valid and effective authorization procedure.

c03.indd 68c03.indd 68 6/24/2010 7:40:55 AM6/24/2010 7:40:55 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 69

This mediation must not be suspended or become capable of being bypassed,
even when the information system is being initialized, undergoing shut-
down, being restarted, or is in maintenance mode. Complete mediation entails
the following:

 1. Identifi cation of the entity making the access request

 2. Verifi cation that the request has not changed since its initiation

 3. Application of the appropriate authorization procedures

 4. Reexamination of previously authorized requests by the same entity

Open Design
There has always been an ongoing discussion about the merits and strengths
of security designs that are kept secret versus designs that are open to scrutiny
and evaluation by the community at large. A good example is an encryption
system. Some feel that keeping the encryption algorithm secret makes it more
diffi cult to break. The opposing philosophy believes that exposing the algo-
rithm to review and study by experts at large while keeping the encryption
key secret leads to a stronger algorithm because the experts have a higher
probability of discovering weaknesses in it. In general, the latter approach has
proven more effective, except in the case of organizations such as the National
Security Agency (NSA), which employs some of the world’s best cryptographers
and mathematicians.

For most purposes, an open-access cloud system design that has been evalu-
ated and tested by a myriad of experts provides a more secure authentication
method than one that has not been widely assessed. Security of such mechanisms
depends on protecting passwords or keys.

Least Common Mechanism
This principle states that a minimum number of protection mechanisms
should be common to multiple users, as shared access paths can be sources
of unauthorized information exchange. Shared access paths that pro-
vide unintentional data transfers are known as covert channels. Thus, the
least common mechanism promotes the least possible sharing of common
security mechanisms.

Psychological Acceptability
Psychological acceptability refers to the ease of use and intuitiveness of the user
interface that controls and interacts with the cloud access control mechanisms.
Users must be able to understand the user interface and use it without having
to interpret complex instructions.

c03.indd 69c03.indd 69 6/24/2010 7:40:55 AM6/24/2010 7:40:55 AM

70 Chapter 3 n Cloud Computing Software Security Fundamentals

Weakest Link
As in the old saying “A chain is only as strong as its weakest link,” the security
of a cloud system is only as good as its weakest component. Thus, it is important
to identify the weakest mechanisms in the security chain and layers of defense,
and improve them so that risks to the system are mitigated to an acceptable level.

Leveraging Existing Components
In many instances, the security mechanisms of a cloud implementation might
not be confi gured properly or used to their maximum capability. Reviewing
the state and settings of the extant security mechanisms and ensuring that they
are operating at their optimum design points will greatly improve the security
posture of an information system.

Another approach that can be used to increase cloud system security by
leveraging existing components is to partition the system into defended sub-
units. Then, if a security mechanism is penetrated for one sub-unit, it will not
affect the other sub-units, and damage to the computing resources will be
minimized.

Secure Cloud Software Requirements

The requirements for secure cloud software are concerned with nonfunctional
issues such as minimizing or eliminating vulnerabilities and ensuring that
the software will perform as required, even under attack. This goal is distinct
from security functionality in software, which addresses areas that derive
from the information security policy, such as identifi cation, authentication, and
authorization.

Software requirements engineering is the process of determining customer
software expectations and needs, and it is conducted before the software
design phase. The requirements have to be unambiguous, correct, quantifi -
able, and detailed.

Karen Goertzel, Theodore Winograd, and their contributors in “Enhancing
the Development Life Cycle to Produce Secure Software”7 from the United States
Department of Defense Data and Analysis Center for Software (DACS) state that
all software shares the following three security needs:

 n It must be dependable under anticipated operating conditions, and remain
dependable under hostile operating conditions.

 n It must be trustworthy in its own behavior, and in its inability to be
compromised by an attacker through exploitation of vulnerabilities or
insertion of malicious code.

c03.indd 70c03.indd 70 6/24/2010 7:40:55 AM6/24/2010 7:40:55 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 71

 n It must be resilient enough to recover quickly to full operational capability
with a minimum of damage to itself, the resources and data it handles,
and the external components with which it interacts.

In the following sections, cloud software considerations related to functional
security and secure properties are explored in the context of software require-
ments engineering. Secure requirements for security-related cloud software
functions generally defi ne what the software has to accomplish to perform a
task securely.

Secure Development Practices
There are many methods for developing code. Any of them can be used to
develop a secure cloud application. Every development model must have both
requirements and testing. In some models, the requirements may emerge over
time. It is very important that security requirements are established early in
the development process.

Security in a cloud application tends to be subtle and invisible. Security is
prominent at only two times in the development life cycle: requirements defi ni-
tion and testing. At other times, deadlines, capabilities, performance, the look
and feel, and dozens of other issues tend to push security to the back. This is
why it is important to ensure that security requirements are prominent at the
beginning of the software development life cycle.

In many respects, the tools and techniques used to design and develop clean,
effi cient cloud applications will support the development of secure code as well.
Special attention, however, should be shown in the following areas:

 n Handling data — Some data is more sensitive and requires special handling.

 n Code practices — Care must be taken not to expose too much information
to a would-be attacker.

 n Language options — Consider the strengths and weakness of the language
used.

 n Input validation and content injection — Data (content) entered by a user
should never have direct access to a command or a query.

 n Physical security of the system — Physical access to the cloud servers
should be restricted.

Handling Data

As the Internet continues to be a driving force in most of our everyday lives,
more and more personal and sensitive information will be put on cloud
servers. Requirements for handling this private information did not exist fi ve

c03.indd 71c03.indd 71 6/24/2010 7:40:55 AM6/24/2010 7:40:55 AM

72 Chapter 3 n Cloud Computing Software Security Fundamentals

years ago, while other data, such as passwords, has always required special
handling. Following are some special cases for the handling of sensitive or
critical data:

 n Passwords should never be transmitted in the clear. They should always
be encrypted.

 n Passwords should never be viewable on the user’s screen as they are
entered into the computer. Even though asterisks (*) are being displayed,
care must be taken to ensure that it is not just because the font is all aster-
isks. If that is the case, someone could steal the password by copying and
pasting the password from the screen.

 n If possible, passwords should always be encrypted with one-way hashes.
This will ensure that no one (not even a system administrator) can extract
the password from the server. The only way to break the password would
be through brute-force cracking. With one-way hashing, the actual pass-
words are not compared to authenticate the user; rather, the hashed value
is stored on the server and is compared with the hashed value sent by the
user. If the passwords cannot be decrypted, users cannot be provided their
passwords when they forget them. In such cases, the system administrator
must enter a new password for the user, which the user can change upon
re-entering the application.

 n Credit card and other fi nancial information should never be sent in the clear.

 n Cloud servers should minimize the transmissions and printing of credit
card information. This includes all reports that may be used for internal
use, such as troubleshooting, status, and progress reports.

 n Sensitive data should not be passed to the cloud server as part of the
query string, as the query string may be recorded in logs and accessed by
persons not authorized to see the credit card information. For example,
the following query string includes a credit card number:

http://www.server site.com/process_card.asp?cardnumber=1234567890123456

Code Practices

The minimum necessary information should be included in cloud server code.
Attackers will spend countless hours examining HTML and scripts for informa-
tion that can be used to make their intrusions easier to accomplish.

Comments should be stripped from operational code, and names and other
personal information should be avoided. HTML comment fi elds should not reveal
exploitable information about the developers or the organization. Comments are
not bad per se, but those embedded in the HTML or client script and which may
contain private information can be very dangerous in the hands of an attacker.

c03.indd 72c03.indd 72 6/24/2010 7:40:55 AM6/24/2010 7:40:55 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 73

Third-party software packages, such as Web servers and FTP servers, often
provide banners that indicate the version of the software that is running. Attackers
can use this information to narrow their search of exploits to apply to these
targets. In most cases, these banners can be suppressed or altered.

Language Options

One of the most frequently discovered vulnerabilities in cloud server applica-
tions is a direct result of the use of C and C++. The C language is unable to detect
and prevent improper memory allocation, which can result in buffer overfl ows.

Because the C language cannot prevent buffer overfl ows, it is left to the pro-
grammer to implement safe programming techniques. Good coding practices
will check for boundary limits and ensure that functions are properly called.
This requires a great deal of discipline from the programmer; and in practice
even the most experienced developers can overlook these checks occasionally.

One of the reasons Java is so popular is because of its intrinsic security mecha-
nisms. Malicious language constructs should not be possible in Java. The Java
Virtual Machine (JVM) is responsible for stopping buffer overfl ows, the use of
uninitialized variables, and the use of invalid opcodes.

Input Validation and Content Injection

All user input that cannot be trusted must be verifi ed and validated. Content
injection occurs when the cloud server takes input from the user and applies the
content of that input into commands or SQL statements. Essentially, the user’s
input is injected into a command that is executed by the server. Content injec-
tion can occur when the server does not have a clear distinction and separation
between the data input and the commands executed.

Physical Security of the System

Any cloud server is vulnerable to an attacker with unlimited time and physi-
cal access to the server. Additionally, physical problems could cause the server
to have down time. This would be a loss of availability, which you may recall
is one of the key principles of the security triad — confi dentiality, integrity,
and availability (CIA). The following items should be provided to ensure server
availability:

 n Provide an uninterruptible power supply (UPS) unit with surge protection.

 n Provide fi re protection to minimize the loss of personnel and equipment.

 n Provide adequate cooling and ventilation.

 n Provide adequate lighting and workspace for maintaining and upgrad-
ing the system.

c03.indd 73c03.indd 73 6/24/2010 7:40:55 AM6/24/2010 7:40:55 AM

74 Chapter 3 n Cloud Computing Software Security Fundamentals

 n Restrict physical access to the server. Unauthorized persons should not
get near the server. Even casual contact can lead to outages. The server
space should be locked and alarmed. Any access to the space should be
recorded for later evaluation should a problem occur. Inventory should
be tightly controlled and monitored.

 n The physical protections listed here should extend to the network cables
and other devices (such as routers) that are critical to the cloud server’s
operation.

Approaches to Cloud Software Requirements
Engineering
Cloud system software requirements engineering demands exten-
sive interaction with the user, and the product of the process includes
both nonfunctional and functional software performance characteristics.
Figure 3-1 illustrates the major elements of the software requirements
engineering process.

Figure 3-1: Software requirements engineering components

Requirements
Elicitation

Requirements Analysis
and Negotiations

User Needs
Domain Information

Existing System Information
Regulations
Standards

etc.

Requirements
Documentation

System
Document

Agreed-Upon
Requirements

Requirements
Document

Requirements
Validation

Source: Information Assurance Technology Analysis Center (IATC), Data and Analysis Center for Software
(DACS), “State-of-the-Art Report,” July 31, 2007.

Figure 3-2 illustrates additional elements that can be used to augment
traditional software requirements engineering to increase cloud software
security.

c03.indd 74c03.indd 74 6/24/2010 7:40:55 AM6/24/2010 7:40:55 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 75

Figure 3-2: Additions to the software requirements engineering process to promote
secure software

Requirements
Elicitation

Requirements Analysis
and Negotiations

User Needs
Domain Information

Existing System Information
Regulations
Standards

etc.

Requirements
Documentation

System
Document

Agreed-Upon
Requirements

Requirements
Document

Requirements
Validation

Formal
Specification

AssuranceAsAsAs
Case

Threat
Analysis

Risk
Assessment

Abuse/Misuse
Cases

Models

ExceptionExExEx
Handing

A Resource Perspective on Cloud Software Security
Requirements

Approaching software security requirements derivation from a resource per-
spective provides an effective method for addressing cloud software security
requirements. In their April 1995 paper “SMART Requirements” (www.win
.tue.nl/~wstomv/edu/2ip30/references/smart-requirements.pdf), Mike
Mannion and Barry Keepence of Napier University, Edinburgh, U.K., take this
approach by defi ning the following SMART basic properties that requirements
should possess:

 n Specifi c — The requirement should be unambiguous and direct. Mannion
and Keepence defi ne this characteristic as being clear, consistent, and simple.

 n Measurable — The requirement should be measurable to ensure that it
has been met.

 n Attainable — The system must be able to exhibit the requirement under
the specifi ed conditions.

 n Realizable — The requirement must be achievable under the system and
project development constraints.

 n Traceable — The requirement should be traceable both forward and back-
ward throughout the development life cycle from conception through
design, implementation, and test.

 Source: Information Assurance Technology Analysis Center (IATC), Data and Analysis Center for Software
(DACS), “State-of-the-Art Report,” July 31, 2007.

c03.indd 75c03.indd 75 6/24/2010 7:40:55 AM6/24/2010 7:40:55 AM

76 Chapter 3 n Cloud Computing Software Security Fundamentals

The Open Web Application Security Project (OWASP) has modifi ed the
SMART acronym (www.owasp.org/index.php/Document_security-relevant_
requirements) to be SMART+ requirements. These requirements, taken from
the OWASP website, are as follows:

 n Specifi c — Requirements should be as detailed as necessary so there are
no ambiguities.

 n Measurable — It should be possible to determine whether the require-
ment has been met, through analysis, testing, or both.

 n Appropriate — Requirements should be validated, thereby ensuring both
that they derive from a real need or demand and that different require-
ments would not be more appropriate.

 n Reasonable — While the mechanism or mechanisms for implementing a
requirement need not be solidifi ed, one should conduct some validation to
determine whether meeting the requirement is physically possible, and
possible given other likely project constraints.

 n Traceable — Requirements should also be isolated to make them easy to
track/validate throughout the development life cycle.

Goal-Oriented Software Security Requirements

Another complementary method for performing cloud software security
requirements engineering is a goal-oriented paradigm in which a goal is a
software objective. The types of goals that are targeted are functional goals,
nonfunctional goals, security robustness, and code correctness. As Axel van
Lamsweerde, Simon Brohez, Renaud De Landtsheer, and David Janssens write in
“From System Goals to Intruder Anti-Goals: Attack Generation and Resolution
for Security Requirements Engineering,” “A goal is a prescriptive statement
of intent about some system (existing or to-be) whose satisfaction in general
requires the cooperation of some of the agents forming that system. Agents
are active components such as humans, devices, legacy software or software-
to-be components that play some role towards goal satisfaction. Goals may
refer to services to be provided (functional goals) or to quality of service
(nonfunctional goals).”8

One implementation of goal-oriented requirements engineering is the
nonfunctional requirements (NFR) framework,9 which provides a basis for determin-
ing if a goal has been satisfi ed through meeting lower-level goals.

Nonfunctional requirements include characteristics of a software system such
as reliability, performance, security, accuracy, costs, reliability, and maintain-
ability. According to Goertzel and Winograd et al., these requirements should
specify the following:10

c03.indd 76c03.indd 76 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 77

 n Properties the software must exhibit (e.g., its behavior must be correct
and predictable; it must remain resilient in the face of attacks)

 n Required level of assurance or risk-avoidance of individual security func-
tions and constraints

 n Controls and rules governing the processes by which the software will be
built, deployed, and operated (e.g., it must be designed to operate within a
virtual machine, and its source code must not contain certain function calls)

Goertzel and Winograd et al. also provide an example of a negative nonfunc-
tional requirement as follows: “The software must validate all input to ensure
it does not exceed the size specifi ed for that type of input.”

A related goal-oriented requirements engineering approach is the MILOS11
project methodology for goal-oriented security requirements engineering.
The MILOS security model uses generic specifi cation patterns that map to the
information system’s properties of confi dentiality, integrity, availability, privacy,
authentication, authorization, and nonrepudiation. The security patterns are
transformed into goals that are used to develop a correlated “anti-model” that
comprises a pattern of “anti-goals” an attacker would use to prevent meeting
the specifi ed system security goals.

NOTE Cloud software security requirements address necessary attributes
for software behavior and limitations on software functionality, whereas
cloud software requirements are concerned with necessary software function-
ality and performance specifi cations.

Monitoring Internal and External Requirements

The requirements of the information system security policy relative to software
assurance should be analyzed to ensure their consistency and correctness. Two
types of secure software requirements analysis should be performed:

 n Internal — Necessary in order to ascertain that the requirements are com-
plete, correct, and consistent with the related specifi cation requirements.
The analysis should address the following:

 n Security constraints

 n The software’s nonfunctional properties

 n The software’s positive functional requirements

 n External — Necessary to determine the following:

 n The software assurance requirements address the legal regulatory and
required policy issues.

c03.indd 77c03.indd 77 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

78 Chapter 3 n Cloud Computing Software Security Fundamentals

 n The nonfunctional security requirements represent a proper decom-
position of the system security goals.

 n Software assurance requirements don’t confl ict with system security goals.

 n The software is resilient.

Also, in the context of internal and external access to information systems,
the issues in Table 3-1 should be considered.

Table 3-1: Internal and External Security Requirements

INTERNAL EXTERNAL

Maintain identity of active users External connections must incorpo-
rate adequate controls to safeguard IT
resources.

Implement internal access controls At a minimum, all external connections
must incorporate a fi rewall.

Use secure gateways to allow internal
users to connect to external networks

If the user access originates from out-
side the protected network, user must
be identifi ed and authenticated at the
gateway.

Hide internal Domain Name Systems
(DNSs)

Use external authentication databases,
such as RADIUS.

Dial-up modems should not be con-
nected to computers that are connected
to the internal network.

Employ content fi ltering to permit or
deny services to specifi c external hosts.

E-mail messages fl owing through the
information systems should be moni-
tored for internal policy compliance.

Accredit external connections prior
to use.

External connections should be peri-
odically reviewed by an independent
organization.

Source: National Institute of Standards and Technology, “An Introduction to Computer Security: The NIST
Handbook, Special Publication 800-12,” October 1995.

Cloud Security Policy Implementation
and Decomposition
Cloud software security requirements are a function of policies such as
system security policies, software policies, and information system poli-
cies. Cloud providers also have to satisfy regulations and directives such as
FISMA, Gramm-Leach-Bliley, Sarbanes-Oxley, and HIPAA. For proper secure
cloud software implementation, these issues have to be accounted for during
the software development life cycle and through an effective cloud software
security policy.

c03.indd 78c03.indd 78 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 79

Implementation Issues

Important areas addressed by a software system’s cloud security policy include
the following:

 n Access controls

 n Data protection

 n Confi dentiality

 n Integrity

 n Identifi cation and authentication

 n Communication security

 n Accountability

In the context of secure software, a requirement should follow from the gen-
eral policy statements. An example of such a process is provided by Goertzel
and Winograd et al.,12 for the high-level policy functional requirement: “The
server should store both public-access and restricted Web pages.” From this
high-level statement, the following activities should result as presented by
Goertzel, Winograd, et al:

 n Derive the detailed functional requirements, e.g., “The server should
return public-access Web pages to any browser that requests those pages.”

 n Identify the related constraint requirements, e.g., “The server should
return restricted Web pages only to browsers that are acting as
proxies for users with authorized privileges suffi cient to access those
Web pages.”

 n Derive the functional security requirements, e.g., “The server must
authenticate every browser that requests access to a restricted Web page.”

 n Identify the related negative requirements, e.g., “The server must not
return a restricted Web page to any browser that it cannot authenticate.”

The security requirements in a software security policy can also be specifi ed
in terms of functionality properties, such as restrictions on system states and
information fl ows.

Goertzel and Winograd et al. list the following common sources of security
requirements:

 n Stakeholders’ expressed security concerns

 n Security implications of the functional specifi cation

 n Requirements for security functions

 n Compliance and conformance mandates

 n Secure development and deployment standards, guidelines, and best practices

c03.indd 79c03.indd 79 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

80 Chapter 3 n Cloud Computing Software Security Fundamentals

 n Attack models and environment risk analysis

 n Known and likely vulnerabilities in the technologies and commercial-off-
the-shelf (COTS) and open-source software (OSS) components that, due
to preexisting commitments, must be used

An additional source of inputs to secure software policies is NIST FIPS
Publication 200,13 which specifi es the following items:

 n System and Services Acquisition — “Organizations must . . . (ii) employ
system development life cycle processes that incorporate information
security considerations; (iii) employ software usage and installation restric-
tions; and (iv) ensure that third-party providers employ adequate security
measures to protect information, applications, and/or services outsourced
from the organization.”

 n System and Communications Protection — “Organizations must . . .
(ii) employ architectural designs, software development techniques, and
systems engineering principles that promote effective information security
within organizational information systems.”

 n System and Information Integrity — “Organizations must: (i) identify,
report, and correct information and information system fl aws in a timely
manner; (ii) provide protection from malicious code at appropriate locations
within organizational information systems.”

Security policies are the foundation of a sound cloud system security imple-
mentation. Often organizations will implement technical security solutions
without fi rst creating this foundation of policies, standards, guidelines, and
procedures, unintentionally creating unfocused and ineffective security controls.

According to the Data and Analysis Center for Software (DACS), “Information
security policy is concerned, in large part, with defi ning the set of rules by which
system subjects are allowed to change the states of data objects in the system.
In practical terms, this means defi ning for every system subject whether, and
if so how, it may store, transmit, create, modify, or delete a given data object
(or type of data object).”14

The same document also lists three main objectives common to all system
security policies and the mechanisms and countermeasures used to enforce
those policies:

 n They must allow authorized access and connections to the system while
preventing unauthorized access or connections, especially by unknown
or suspicious actors.

 n They must enable allowable reading, modifi cation, destruction, and deletion
of data while preventing unauthorized reading (data leakage), modifi ca-
tion (data tampering), destruction (denial of service), or deletion (denial
of service).

c03.indd 80c03.indd 80 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 81

 n They must block the entry of content (user input, executable code, system
commands, etc.) suspected of containing attack patterns or malicious logic
that could threaten the system’s ability to operate according to its security
policy and its ability to protect the information.

Decomposing Critical Security Issues into Secure Cloud
Software Requirements

An information system security policy addresses the critical issues of confi den-
tiality, integrity, availability, identifi cation, authentication, authorization, and
auditing; and decomposes their elements into the following secure software
requirements.

Confidentiality

Confi dentiality in a cloud system policy is concerned with protecting data during
transfers between entities. A policy defi nes the requirements for ensuring the
confi dentiality of data by preventing the unauthorized disclosure of information
being sent between two end points. The policy should specify who can exchange
information and what type of data can be exchanged. Related issues include
intellectual property rights, access control, encryption, inference, anonymity,
and covert channels. These policy statements should translate into requirements
that address the following:

 n Mechanisms that should be applied to enforce authorization

 n What form of information is provided to the user and what the user
can view

 n The means of identity establishment

 n What other types of confi dentiality utilities should be used

Integrity

A cloud policy has to provide the requirements for ensuring the integrity of
data both in transit and in storage. It should also specify means to recover
from detectable errors, such as deletions, insertions, and modifi cations. The
means to protect the integrity of information include access control policies
and decisions regarding who can transmit and receive data and which infor-
mation can be exchanged. Derived requirements for integrity should address
the following:

 n Validating the data origin

 n Detecting the alteration of data

 n Determining whether the data origin has changed

c03.indd 81c03.indd 81 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

82 Chapter 3 n Cloud Computing Software Security Fundamentals

The policy should also provide for the integrity of data stored on media
through monitoring for errors. Consideration should be given to determin-
ing the attributes and means that will be used as the basis for the monitoring
and the actions that need to be taken should an integrity error occur. One
type of integrity can also be described as maintaining a software system in a
predefi ned “legitimate” state.

Availability

Cloud policy requirements for availability are concerned with denying ille-
gitimate access to computing resources and preventing external attacks such
as denial-of-service attacks. Additional issues to address include attempts by
malicious entities to control, destroy, or damage computing resources and deny
legitimate access to systems. While availability is being preserved, confi dential-
ity and integrity have to be maintained. Requirements for this category should
address how to ensure that computing resources are available to authorized
users when needed.

Authentication and Identification

A cloud system policy should specify the means of authenticating a user when
the user is requesting service on a cloud resource and presenting his or her
identity. The authentication must be performed in a secure manner. Strong
authentication using a public key certifi cate should be employed to bind a user
to an identity. Exchanged information should not be alterable. This safeguard
can be accomplished using a certifi cate-based digital signature. Some corre-
sponding requirements include the following:

 n Mechanisms for determining identity

 n Binding of a resource to an identity

 n Identifi cation of communication origins

 n Management of out-of-band authentication means

 n Reaffi rmations of identities

Authorization

After authentication, the cloud system policy must address authorization to
allow access to resources, including the following areas:

 n A user requesting that specifi ed services not be applied to his or her mes-
sage traffi c

 n Bases for negative or positive responses

 n Specifying responses to requests for services in a simple and clear
manner

c03.indd 82c03.indd 82 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 83

 n Including the type of service and the identity of the user in an authoriza-
tion to access services

 n Identifi cation of entities that have the authority to set authorization rules
between users and services

 n Means for the provider of services to identify the user and associated traffi c

 n Means for the user to acquire information concerning the service profi le
kept by the service provider on the user

These policy issues should generate requirements that address the following:

 n Specifi c mechanisms to provide for access control

 n Privileges assigned to subjects during the system’s life

 n Management of access control subsystems

Auditing

The auditing of a cloud system has characteristics similar to auditing in the
software development life cycle (SDLC) in that the auditing plan must address
the following:

 n Determination of the audit’s scope

 n Determination of the audit’s objectives

 n Validation of the audit plan

 n Identifi cation of necessary resources

 n Conduct of the audit

 n Documentation of the audit

 n Validation of the audit results

 n Report of fi nal results

The Information Systems Audit and Control Association (ISACA) has devel-
oped information systems (IS) audit standards, guidelines, and a code of ethics
for auditors that are directly applicable to cloud platforms. This information can
be found on the ISACA website at www.isaca.org. The cloud system security
policy should decompose the audit requirements to risk-based elements that
consider the following three types of audit-related risks:

 n Inherent risk — The susceptibility of a process to perform erroneously,
assuming that no internal controls exist

 n Detection risk — The probability that an auditor’s methods will not detect
a material error

 n Control risk — The probability that extant controls will not prevent or
detect errors in a timely fashion

c03.indd 83c03.indd 83 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

84 Chapter 3 n Cloud Computing Software Security Fundamentals

The cloud system security policy decomposition for auditing should also
consider organizational characteristics such as supervisory issues, institutional
ethics, compensation policies, organizational history, and the business environ-
ment. In particular, the following elements of the cloud system organizational
structure and management should be taken into account:

 n Organizational roles and responsibilities

 n Separation of duties

 n IS management

 n IS training

 n Qualifi cations of IS staff

 n Database administration

 n Third party–provided services

 n Managing of contracts

 n Service-level agreements (SLAs)

 n Quality management and assurance standards

 n Change management

 n Problem management

 n Project management

 n Performance management and indicators

 n Capacity management

 n Economic performance

 n Application of SOP 98-1,15 which is an accounting statement of posi-
tion that defi nes how information technology software development
or acquisition costs are to be expended or capitalized

 n Expense management and monitoring

 n Information system security management

 n Business continuity management

The cloud policy decomposition for the audit component is recursive in that
the audit has to address the cloud system security policy, standards, guidelines,
and procedures. It should also delineate the three basic types of controls, which
are preventive, detective, and corrective; and it should provide the basis for a
qualitative audit risk assessment that includes the following:

 n Identifi cation of all relevant assets

 n Valuation of the assets

c03.indd 84c03.indd 84 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 85

 n Identifi cation of threats

 n Identifi cation of regulatory requirements

 n Identifi cation of organizational risk requirements

 n Identifi cation of the likelihood of threat occurrence

 n Defi nition of organizational entities or subgroupings

 n Review of previous audits

 n Determination of audit budget constraints

The cloud policy should ensure that auditing can pass a test of due care, which
is defi ned by the ISACA as “the level of diligence that a prudent and competent
person would exercise under a given set of circumstances.”16

In the event that it is necessary to conduct forensic investigations in cloud
systems, the confi dentiality and integrity of audit information must be protected
at the highest level of security.

In 1996, the ISACA introduced a valuable audit planning and execution tool,
the “Control Objectives for Information and Related Technology (COBIT)” docu-
ment. As of this writing, COBIT is now in version 4.1. It is divided into four
domains comprising 34 high-level control objectives. These 34 control objectives
are further divided into 318 specifi c control objectives. COBIT defi nes a control
objective that is a goal aimed at preventing a set of risks from occurring . The
four COBIT domains are as follows:

 n Planning and organization (PO) — Provides direction to solution delivery
(AI) and service delivery (DS)

 n Acquisition and implementation (AI) — Provides the solutions and passes
them to be turned into services

 n Deliver and support (DS) — Receives the solutions and makes them avail-
able for end users

 n Monitor and evaluate (ME) — Monitors all processes to ensure that the
direction provided is followed

NIST 33 Security Principles
In June 2001, the National Institute of Standards and Technology’s Information
Technology Laboratory (ITL) published NIST Special Publication 800-27,
“Engineering Principles for Information Technology Security (EP-ITS),” to
assist in the secure design, development, deployment, and life cycle of infor-
mation systems. The document was revised (Revision A) in 2004. It presents
33 security principles that begin at the design phase of the information system
or application and continue until the system’s retirement and secure disposal.

c03.indd 85c03.indd 85 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

86 Chapter 3 n Cloud Computing Software Security Fundamentals

Some of the 33 principles that are most applicable to cloud security policies and
management are as follows:

 n Principle 1 — Establish a sound security policy as the “foundation” for
design.

 n Principle 2 — Treat security as an integral part of the overall system design.

 n Principle 3 — Clearly delineate the physical and logical security boundar-
ies governed by associated security policies.

 n Principle 6 — Assume that external systems are insecure.

 n Principle 7 — Identify potential trade-offs between reducing risk and
increased costs and decreases in other aspects of operational effectiveness.

 n Principle 16 — Implement layered security; ensure there is no single point
of vulnerability.

 n Principle 20 — Isolate public access systems from mission-critical resources
(e.g., data, processes, etc.).

 n Principle 21 — Use boundary mechanisms to separate computing systems
and network infrastructures.

 n Principle 25 — Minimize the system elements to be trusted.

 n Principle 26 — Implement least privilege.

 n Principle 32 — Authenticate users and processes to ensure appropriate
access control decisions both within and across domains.

 n Principle 33 — Use unique identities to ensure accountability.

Secure Cloud Software Testing

Secure cloud software testing involves a number of activities. Each activity
is based on a formal standard or methodology and adds unique value to the
overall secure software testing process. An organization typically selects test-
ing activities based on a number of factors, including secure cloud software
requirements and available resources.

Analyses of test results form the basis for assessing risk to cloud infor-
mation and means of remediation. Standards and methodologies such as
the International Organization for Standardization (ISO) 9126 Standard for
Software Engineering/Product Quality, the Systems Security Engineering
Capability Maturity Model (SSE-CMM) and the Open Source Security
Testing Methodology Manual (OSSTMM) provide additional guidance for
secure software evaluation and mitigation. After software has been modi-
fied, regression testing provides assurance that the original software system
functionality and security characteristics are not negatively affected by the
respective changes.

c03.indd 86c03.indd 86 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 87

Testing for Security Quality Assurance
Secure software testing has considerations in common with quality assurance
testing. For example, the correct version of the software should always be tested.
However, secure software testing must also measure the quality of the software’s
security properties. For example, software should be tested to ensure that it
meets its functional specifi cations, and does nothing else. Testing that software
does nothing else — that is, does not contain any unintended functionality — is
a measure of security quality.

There is a lack of commonly agreed-upon defi nitions for software quality,
but it is possible to refer to software quality by its common attributes. One well-
known characterization of software quality is the International Organization
for Standardization (ISO) 9126 standard. The ISO 9126 standard characterizes
software quality with six main attributes and 21 subcharacteristics, as shown
in Table 3-2.

Table 3-2: The ISO 9126 Software Quality Standards

ATTRIBUTES SUBCHARACTERISTICS DEFINITION

Functionality Suitability Attributes of software that bear on the
presence and appropriateness of a set
of functions for specifi ed tasks

Accurateness Attributes of software that bear on
the provision of right or agreed upon
results or effects

Interoperability Attributes of software that bear on its
ability to interact with specifi ed systems

Compliance Attributes of software that make the
software adhere to application-related
standards or conventions or regula-
tions in laws and similar prescriptions

Security Attributes of software that bear on its
ability to prevent unauthorized access,
whether accidental or deliberate, to
programs or data

Reliability Maturity Attributes of software that bear on the
frequency of failure by faults in the
software

Fault tolerance Attributes of software that bear on its
ability to maintain a specifi ed level
of performance in case of software
faults or infringement of its specifi ed
interface

Continued

c03.indd 87c03.indd 87 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

88 Chapter 3 n Cloud Computing Software Security Fundamentals

ATTRIBUTES SUBCHARACTERISTICS DEFINITION

Recoverability Attributes of software that bear
on the capability to re-establish its
level of performance and recover
the data directly affected in case
of a failure and on the time and
effort needed for it

Usability Understandability Attributes of software that bear on
the users’ effort for recognizing the
logical concept and its applicability

Learnability Attributes of software that bear
on the users’ effort for learning its
application

Operability Attributes of software that bear on
the users’ effort for operation and
operation control

Effi ciency Time behavior Attributes of software that bear
on response and processing times
and on throughput rates in per-
forming its function

Resource behavior Attributes of software that bear on the
amount of resources used and
the duration of such use in per-
forming its function

Maintainability Analyzability Attributes of software that bear on
the effort needed for diagnosis of
defi ciencies or causes of failures
or for identifi cation of parts to be
modifi ed

Changeability Attributes of software that bear on
the effort needed for modifi cation,
fault removal, or environmental
change

Stability Attributes of software that bear
on the risk of unexpected effect of
modifi cations

Testability Attributes of software that bear on
the effort needed for validating the
modifi ed software

Table 3-2 (continued)

c03.indd 88c03.indd 88 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 89

ATTRIBUTES SUBCHARACTERISTICS DEFINITION

Portability Adaptability Attributes of software that bear on
the opportunity for its adaptation
to different specifi ed environments
without applying other actions
or means than those provided
for this purpose for the software
considered

Installability Attributes of software that bear
on the effort needed to install
the software in a specifi ed
environment

Conformance Attributes of software that make
the software adhere to stan-
dards or conventions relating to
portability

Replaceability Attributes of software that bear on
opportunity and effort using it in
the place of specifi ed other soft-
ware in the environment of that
software

Conformance Testing

The National Institute of Standards and Technology (NIST) states that “confor-
mance testing activities assess whether a software product meets the requirements
of a particular specifi cation or standard.”17 These standards are typically well
regarded and widely accepted, such as those from the International Organization
for Standardization (ISO), the Institute of Electrical and Electronics Engineers,
Inc. (IEEE), or the American National Standards Institute (ANSI). They refl ect
a commonly accepted “reference system” whose standards recommendations
are suffi ciently defi ned and tested by certifi able test methods. They are used to
evaluate whether the software product implements each of the specifi c require-
ments of the standard or specifi cation.

Conformance testing methodologies applicable to cloud services have been
developed for operating system interfaces, computer graphics, documented
interchange formats, computer networks, and programming language proces-
sors. Most testing methodologies use test case scenarios (e.g., abstract test suites,
test assertions, test cases), which themselves must be tested.

c03.indd 89c03.indd 89 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

90 Chapter 3 n Cloud Computing Software Security Fundamentals

Standardization is an important component of conformance testing. It usu-
ally includes developing the functional description and language specifi cation,
creating the testing methodology, and “testing” the test case scenarios.

A major benefi t of conformance testing is that it facilitates interoperability
between various cloud software products by confi rming that each software
product meets an agreed-upon standard or specifi cation.

One type of conformance testing, protocol-based testing, uses an applica-
tion’s communication protocol as a direct basis for testing the application. This
method is useful for cloud-based applications. Protocol-based testing is especially
important for security testing in Web-based applications, because Web proto-
cols provide the easiest way for remote attackers to access such applications.18

Functional Testing

In functional testing, a cloud software application is tested at runtime to deter-
mine whether it conforms to its functional requirements. Requirements that state
how the application should respond when a specifi c event occurs are referred to
as positive requirements. Typically, a positive requirement is mapped to a specifi c
software artifact meant to implement that requirement. This provides trace-
ability from requirements to implementation and informs the tester of which
code artifact to test to validate the expected functionality.

An example of a positive requirement is “the application should lock the user
account after three failed login attempts.” A tester can validate the expected
functionality (the lockout) by attempting to log in to the application three times
with the same username and incorrect passwords. This type of test can be easily
automated with a functional testing tool suite, such as the open-source Canoo
WebTest (http://webtest.canoo.com).

Functional testing also includes negative requirements, which specify what
software should not do. An example of a negative requirement is “the cloud
application should not allow for the stored data to be disclosed.” This type
of requirement is more diffi cult to test because the expected behavior is not
implemented in a specifi c software artifact. Testing this requirement properly
would require the tester to anticipate every anomalous input, condition, cause,
and effect. Instead, the testing should be driven by risk analysis and threat
modeling. This enables the negative requirement to be documented as a threat
scenario, and the functionality of the countermeasure as a factor to mitigate
the threat. The following steps summarize this approach from the Open Web
Application Security Project (OWASP) Testing Guide (www.owasp.org/index
.php/Category:OWASP_Testing_Project).

First, the security requirements are documented from a threats and counter-
measures perspective:

 n Encrypt authentication data in storage and transit to mitigate risk of
information disclosure and authentication protocol attacks.

c03.indd 90c03.indd 90 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 91

 n Encrypt passwords using nonreversible encryption such as a hashing
algorithm and a salt to prevent dictionary attacks. Salt refers to inserting
random bits into algorithms used for key generation to mitigate against
dictionary attacks.

 n Lock out accounts after reaching a login failure threshold and enforce
password complexity to mitigate risk of brute-force password attacks.

 n Display generic error messages upon validation of credentials to mitigate
risk of account harvesting/enumeration.

 n Mutually authenticate client and server to prevent nonrepudiation and
man-in-the-middle (MITM) attacks.

Artifacts produced in the threat modeling process, such as threat trees and
attack libraries, can then be used to derive negative test scenarios.

A threat tree will assume a root attack (e.g., attack might be able to read other
users’ messages) and identify different exploits of security controls (e.g., data
validation fails because of a SQL injection vulnerability) and necessary coun-
termeasures (e.g., implement data validation and parameterized queries) that
could be tested for effectiveness in mitigating such attacks.

Typically, functional testing is used to test the functionality of implemented
features or after the software feature is complete. However, code coverage is
limited by the number of available use cases. If a test is not created for a specifi c
use case, then a number of execution paths in the software will remain untested.
Therefore, even if the functionality is validated for all available use cases, that
is not a guarantee that the software is free of defects.

Logic testing is a type of functional testing that involves ensuring that busi-
ness logic is predicated on the correct assumptions. Business logic is the code
that satisfi es the business purpose of cloud software and typically models
and automates a “real-life” or “paper” business process such as e-commerce
or inventory management. Business logic is composed of both business rules
and workfl ows:

 n Business rules that express business policy (such as channels, location,
logistics, prices, and products)

 n Workfl ows based on the ordered tasks of passing documents or data from
one participant (a person or a software system) to another

Business logic fl aws are typically specifi c to the cloud application being
tested, and are diffi cult to detect. Automated tools do a poor job of discover-
ing logic fl aws because they do not understand the context of the decisions.
Therefore, discovering logic fl aws is typically a manual process performed by a
human tester.

When looking for business logic fl aws, the tester begins by considering the
rules for the business function being provided by the cloud application. Next,
the tester searches for any limits or restrictions on people’s behavior. Then the

c03.indd 91c03.indd 91 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

92 Chapter 3 n Cloud Computing Software Security Fundamentals

application can be tested to validate that it enforces those rules. A classic example
of a business logic fl aw is the modifi cation of prices that was sometimes allowed
by e-commerce applications on the early Web-based Internet.

Setting the price of a product on an e-commerce site as a negative number
could result in funds being credited to an attacker. A countermeasure to this
vulnerability is to implement positive validation of the price so that the applica-
tion allows only positive numbers in a specifi c numerical range. Of course, the
application should never accept and process any data from the client that did
not require user input in the fi rst place.

Performance Testing

In an online report (http://vote.nist.gov/vvsg-report.htm), NIST states that
“what distinguishes performance testing from functional testing is the form
of the experimental result. A functional test yields a yes or no verdict, while a
performance test yields a quantity.” Performance testing measures how well
the cloud software system executes according to its required response times,
throughput, CPU, usage, and other quantifi able features in operation. The quan-
tity resulting from a test may subsequently be reduced to a yes or no verdict by
comparison with a benchmark.

Performance testing is also commonly known by other names and/or asso-
ciated with other testing activities, such as stress testing, capacity testing,
load testing, volume testing, and benchmark testing. These various performance
testing activities all have approximately the same goal: “measuring the cloud
software product under a real or simulated load.”19

Typically, performance testing is conducted late in the software life cycle
when the software is fully developed. In order to obtain accurate measurements,
the cloud software is deployed and tested in an environment that simulates the
operational environment. This can be achieved by creating a cloud “staging”
environment, essentially a mirror copy of the production infrastructure, and
simulating typical operating conditions.

A major benefi t of performance testing is that it is typically designed specifi -
cally for pushing system limits over a long period of time. This form of testing
has commonly been used to uncover unique failures not discovered during
conformance or interoperability tests. In addition, benchmarking is typically
used to provide competitive baseline performance comparisons. For instance,
these tests are used to characterize performance prior to manufacturing as well
as to compare performance characteristics of other software products prior to
purchase.

Performance testing procedures provide steps for determining the ability of
the cloud software to function properly, particularly when near or beyond the
boundaries of its specifi ed capabilities or requirements. These boundaries are
usually stated in terms of the volume of information used. The specifi ed metrics

c03.indd 92c03.indd 92 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 93

are usually stated in terms of time to complete an operation. Ideally, performance
testing is conducted by running a software element against standard datasets
or scenarios, known as reference data.

Performance measures and requirements are quantitative, which means they
consist of numbers that can be measured and confi rmed by rational experiments.
A performance specifi cation consists of a set of specifi ed numbers that can be
reduced to measured numbers, often in the form of a probability distribution.
The numbers measured for the software product are either less than, more
than, or equal to the specifi ed values. If less than, the software product fails;
if more than or equal to, the software product passes the tests. Every perfor-
mance specifi cation is a variation of these simple ideas. Common metrics used
in performance testing include the following:

 n Throughput — The rate at which the system processes transactions, com-
monly measured in bytes per second

 n Processing delay — The time it takes to process those transactions, mea-
sured in seconds

 n Load — The rate at which transactions are submitted to a software product,
measured in arriving transactions per second

Stress testing is a kind of performance testing that involves increasing the
load on a software system beyond normal operating capacity and observing
the results. Stress testing can be used to ensure that the cloud software remains
stable and reliable, and can continue to provide a specifi c quality of service,
although the software is often tested to the point of failure. Extreme operating
conditions, such as those associated with resource exhaustion — out of memory
or hardware failures that might occur in a cloud environment — are simulated.

Stress testing can also be used to test the security properties of cloud software
because it can induce anomalous behavior. For example, extreme operating
conditions may cause an error that is poorly handled by the cloud application,
causing it to fail insecurely. In a real-world scenario, a DoS attack targeted
against a cloud application could slow down the execution of the application
such that it exposes a race condition, which could subsequently be exploited as
a security vulnerability.20

NOTE The Microsoft Web Application Stress Tool (www.microsoft.com) is a
freely available tool that simulates multiple browsers requesting pages from a
website. It can be used to gather performance and stability information about a
Web application. It simulates a large number of requests with a relatively small
number of client machines. The goal is to create an environment that is as close
to production as possible so that problems can be discovered and eliminated in a
Web application prior to deployment.

c03.indd 93c03.indd 93 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

94 Chapter 3 n Cloud Computing Software Security Fundamentals

Security Testing

Security testing should assess the security properties and behaviors of
cloud software as it interacts with external entities (human users, environment,
other software) and as its own components interact with each other. Security
testing should verify that software exhibits the following properties and behav-
iors, as summarized from the “Software Security Assurance State-of-the-Art
Report (SOAR)”:21

 n Its behavior is predictable and secure.

 n It exposes no vulnerabilities or weaknesses.

 n Its error and exception handling routines enable it to maintain a secure
state when confronted by attack patterns or intentional faults.

 n It satisfies all of its specified and implicit nonfunctional security
requirements.

 n It does not violate any specifi ed security constraints.

 n As much of its runtime-interpretable source code and byte code as possible
has been obscured or obfuscated to deter reverse engineering.

A security test plan should be included in the overall cloud software test plan
and should defi ne all testing activities, including the following:

 n Security test cases or scenarios

 n Test data, including attack patterns

 n Test oracle (if one is to be used), which is used to determine if a software
test has passed or failed

 n Test tools (white box, black box, static, and dynamic)

 n Analyses to be performed to interpret, correlate, and synthesize the results
from the various tests and outputs from the various tools

Software security testing techniques can be categorized as white box, gray
box, or black box:

 n White box — Testing from an internal perspective, i.e., with full knowl-
edge of the software internals; the source code, architecture and design
documents, and confi guration fi les are available for analysis.

 n Gray box — Analyzing the source code for the purpose of designing the
test cases, but using black box testing techniques; both the source code
and the executable binary are available for analysis.

 n Black box — Testing the software from an external perspective, i.e., with
no prior knowledge of the software; only the binary executable or inter-
mediate byte code is available for analysis.

c03.indd 94c03.indd 94 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 95

An example of a white box testing technique is the static analysis of source code
that should be performed iteratively as the software is being written. Table 3-3 lists
other common security testing techniques and how they are typically categorized.

Table 3-3: Common Security Testing Techniques

TESTING TECHNIQUE CATEGORY

Source code analysis White box

Property-based White box

Source code fault injection White box, gray box

Dynamic code analysis Gray box

Binary fault injection Gray box, black box

Fuzz testing Black box

Binary code analysis Black box

Byte code analysis Black box

Black box debugging Black box

Vulnerability scanning Black box

Penetration testing Black box

Fault Injection
Fault injection is a technique used to improve code coverage by testing all
code paths, especially error-handling code paths that may not be exercised
during functional testing. In fault injection testing, errors are injected into the
cloud software to simulate unintentional user errors and intentional attacks on
the software through its environment, and attacks on the environment itself.

Source Code Fault Injection

In source code fault injection, the tester decides when environment faults should
be triggered. The tester then “instruments” the source code by non-intrusively
inserting changes into the program that refl ect the changed environment data
that would result from those faults.22 The instrumented source code is then
compiled and executed, and the tester observes how the executing software’s
state changes when the instrumented portions of code are executed. This enables
the tester to observe the secure and nonsecure state changes in the software
resulting from changes in its environment.

The tester can also analyze how the cloud software’s state changes as a result
of a fault propagating through the source code. This type of analysis is typically
referred to as fault propagation analysis, and involves two techniques of source
code fault injection: extended propagation analysis and interface propagation analysis.

c03.indd 95c03.indd 95 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

96 Chapter 3 n Cloud Computing Software Security Fundamentals

To prepare for fault propagation analysis, the tester must generate a fault tree
from the software’s source code. To perform an extended propagation analysis,
the tester injects faults into the fault tree, then traces how each injected fault
propagates through the tree. This shows the impact a particular fault will have
on the overall behavior of the software.

Interface propagation analysis focuses on how faults are propagated through
the interfaces between the component/module and other cloud application-level
and environment-level components. In interface propagation analysis, the tester
injects a fault into the data inputs between components, views how the resulting
faults propagate, and observes whether any new anomalies result. This type
of analysis enables the tester to determine how the failure of one component
can affect the failure of a neighboring component, particularly important if a
neighboring cloud component is of high consequence.

Source code fault injection is particularly useful in detecting the following:

 n Incorrect use of pointers and arrays

 n Use of dangerous calls

 n Race conditions

Source code fault injection should be performed iteratively as the software
is being written. When new threats (attack types and intrusion techniques) are
discovered, the source code can be re-instrumented with faults that are repre-
sentative of those new threat types.

Binary Fault Injection

Binary fault injection is a runtime analysis technique whereby an executing cloud
application is monitored as faults are injected. By monitoring system call traces,
a tester can identify the names of system calls, the parameters to each call, and
the call’s return code. This enables the tester to discover the names and types of
resources being accessed by the calling software, how the resources are being
used, and the success or failure of each access attempt. In binary fault analysis,
faults are injected into the environment resources that surround the cloud
application. Environmental faults provide the tester with a number of benefi ts:

 n They simulate real-world attack scenarios and can be easily automated.

 n They simulate environment anomalies without requiring an understanding
of how those anomalies actually occur in the real world. This enables fault
injection by testers who do not have prior knowledge of the environment
whose faults are being simulated.

 n The tester can choose when to trigger a particular environmental fault.
This avoids the problem of a full environment emulation in which the
environment state when the application interacts with it may not be what
is expected, or may not have the expected effect on the software’s behavior.

c03.indd 96c03.indd 96 6/24/2010 7:40:56 AM6/24/2010 7:40:56 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 97

It is diffi cult to predict the complex inputs the cloud software will actually
receive in its target environment. Therefore, fault injection scenarios should be
designed to give the tester the most complete understanding possible of the
security of the behaviors, states, and properties of the software system under
all possible operating conditions. Once the cloud application has been deployed
to production, the tester can employ penetration testing and vulnerability scan-
ning to provide an additional measure of the application’s security posture.

Binary fault injection tools include binary fault injectors and brute-force
testers. These tools should support the common functionality found in
the application. For example, the commercial fault injection tool Holodeck

(www.securityinnovation.com/holodeck/) is often used to simulate faults in
Microsoft operating system applications. Holodeck injects faults for common
functionality found in a typical Windows environment such as the following:

 n Network — Cable disconnected, network not installed, wrong Winsock
version, Winsock task limit reached, no ports available, network is down

 n Disk — Insuffi cient disk space, cyclic redundancy check (CRC) errors, too
many fi les open, disk is write-protected, no disk is in the drive

 n Memory — Insuffi cient memory, failure to allocate, locked memory

Holodeck also supports monitoring an application to watch its interactions
with the environment.

Dynamic Code Analysis

Dynamic code analysis examines the code as it executes in a running cloud
application, with the tester tracing the external interfaces in the source code to
the corresponding interactions in the executing code, so that any vulnerabilities
or anomalies that arise in the executing interfaces are simultaneously located
in the source code, where they can then be fi xed.

Unlike static analysis, dynamic analysis enables the tester to exercise the
software in ways that expose vulnerabilities introduced by interactions with
users and changes in the confi guration or behavior of environment compo-
nents. Because the software isn’t fully linked and deployed in its actual target
environment, these interactions and their associated inputs and environment
conditions are essentially simulated by the testing tool.

An example of a dynamic code analysis toolset is the open-source Valgrind
(www.valgrind.org), which is useful in detecting memory management and
thread bugs.

Property-Based Testing

Property-based testing is a formal analysis technique developed at the University
of California at Davis.23 Property-based testing validates that the software’s
implemented functionality satisfi es its specifi cations. It does this by examining

c03.indd 97c03.indd 97 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

98 Chapter 3 n Cloud Computing Software Security Fundamentals

security-relevant properties revealed by the source code, such as the absence of
insecure state changes. Then these security-relevant properties in the code are
compared against the software’s specifi cation to determine whether the security
assumptions have been met.

Like direct code analysis, property-based testing requires the full concentra-
tion of the tester and is a detail-oriented process. Because it requires the tester
to dedicate a signifi cant amount of time to the code, it is often used only to
analyze code that implements high-consequence functions.

Black Box Debugging

Black box debugging24 is a technique to monitor behaviors external to the binary
component or system while it is executing, and thereby observe the data that
passes between that component/system and external entities.

Additionally, by observing how data passes across the software’s boundary, the
analyst can also determine how externally sourced data might be manipulated
to force the software down certain execution paths, or to cause the software to
fail. This can reveal errors and failures that originate not in the cloud software
itself, but are forced by the external entities with which it interacts, or by an
incorrectly implemented API.

Interoperability Testing

Interoperability testing evaluates whether a cloud application can exchange data
(interoperate) with other components or applications. Interoperability testing
activities determine the capability of applications to exchange data via a com-
mon set of exchange formats, to read and write the same fi le formats, and to
communicate using the same protocols. A major goal of interoperability testing
is to detect interoperability problems between cloud software applications before
these applications are put into operation. Interoperability testing requires the
majority of the application to be completed before testing can occur.

Interoperability testing typically takes one of three approaches:

 n Testing all pairs — This is often conducted by a third-party indepen-
dent group of testers who are knowledgeable about the interoperability
characteristics across software products and between software vendors.

 n Testing some of the combinations — This approach involves testing only
part of the combinations and assuming the untested combinations will also
interoperate.

 n Testing against a reference implementation — This approach estab-
lishes a reference implementation, e.g., using the accepted standard, and
testing all products against the reference. In a paper on metrology in
information technology, researchers in the NIST Information Technology
Laboratory state that a typical procedure used to conduct interoperability

c03.indd 98c03.indd 98 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 99

testing includes “developing a representative set of test transactions in one
software product for passage to another software product for processing
verifi cation.”25

One challenge in cloud software component integration is how to build a
secure composite system from components that may or may not be individually
secure. In a paper by Verizon Communications and the University of Texas,26
researchers describe a systematic approach for determining interoperability
of components from a security perspective and unifying the security features,
policies, and implementation mechanisms of components. This is a goal-oriented
and model-driven approach to analyzing the security features of components
to determine interoperability. Along with this approach, the researchers pro-
vide a guideline for integrating the components to fulfi ll the security goals of
the composite system. Following the proposed analysis procedure could lead
to discovery of some classes of security interoperability confl icts that help to
determine whether or not the components should be used together.

Cloud Penetration Testing
A penetration test is a security testing methodology that gives the tester insight
into the strength of the target’s network security by simulating an attack from
a malicious source. The process involves an active analysis of the cloud system
for any potential vulnerabilities that may result from poor or improper system
confi guration, known and/or unknown hardware or software fl aws, or opera-
tional weaknesses in process or technical countermeasures. This analysis is
carried out from the position of a potential attacker, and can involve active
exploitation of security vulnerabilities.

Any security issues that are found are presented to the system owner together
with an assessment of their impact, and often with a proposal for mitigation or
a technical solution. The intent of a penetration test is to proactively determine
the feasibility of an attack or to retroactively determine the degree to which a
successful exploit has affected the business. It is a component of a full security
audit, which includes the following:

 n A Level I, high-level assessment — A top-down look at the organization’s
policies, procedures, standards, and guidelines. A Level I assessment is
not usually hands-on, in that the system’s security is not actually tested.

 n A Level II, network evaluation — More hands-on than a Level I assess-
ment, a Level II assessment has some of the Level I activities plus more
information gathering and scanning.

 n A Level III, penetration test — A penetration test is not usually concerned
with policies. It is more about taking the adversarial view of a hacker, by
seeing what can be accomplished, and with what diffi culty.

c03.indd 99c03.indd 99 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

100 Chapter 3 n Cloud Computing Software Security Fundamentals

Several factors have converged in the cloud environment to make penetration
testing a necessity. The evolution of information technology has focused on ease
of use at the operational end, while exponentially increasing the complexity of
the computing resources. Unfortunately, the administration and management
requirements of cloud systems have increased for several reasons:

 n The skill level required to execute a hacker exploit has steadily decreased.

 n The size and complexity of the network environment has mushroomed.

 n The number of network and cloud-based applications has increased.

 n The detrimental impact of a security breach on corporate assets and good-
will is greater than ever.

Penetration testing is most commonly carried out within a “black box,” that
is, with no prior knowledge of the infrastructure to be tested. At its simplest
level, the penetration test involves three phases:

 1. Preparation — A formal contract is executed containing nondisclosure of
the client’s data and legal protection for the tester. At a minimum, it also
lists the IP addresses to be tested and the time to test.

 2. Execution — In this phase the penetration test is executed, with the tester
looking for potential vulnerabilities.

 3. Delivery — The results of the evaluation are communicated to the tester’s
contact in the organization, and corrective action is advised.

Whether the penetration test is a full knowledge (white box) test, a partial
knowledge (gray box) test, or a zero knowledge (black box) test, after the report
and results are obtained, mitigation techniques have to be applied to reduce the
risk of compromise to an acceptable or tolerable level. The test should address
vulnerabilities and corresponding risks to such areas as applications, remote
access systems, Voice over Internet Protocol (VoIP), wireless networks, and so on.

Legal and Ethical Implications

Because an ethical hacker conducting a penetration test works for an organiza-
tion to assist in evaluating its network security, this individual must adhere to
a high standard of conduct. In fact, there is a Certifi ed Ethical Hacker (CEH)
certifi cation sponsored by the International Council of E-Commerce Consultants
(EC-Council) at www.eccouncil.org that attests to the ethical hacker’s knowl-
edge and subscription to ethical principles. The EC-Council also provides the
Licensed Penetration Tester (LPT) certifi cation, which, to quote their website,
provides the following benefi ts:

 n Standardizes the knowledge base for penetration testing professionals by
incorporating best practices followed by experienced experts in the fi eld

c03.indd 100c03.indd 100 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 101

 n Ensures that each professional licensed by EC-Council follows a strict
code of ethics

 n Is exposed to the best practices in the domain of penetration testing

 n Is aware of all the compliance requirements required by the industry

 n Trains security professionals to analyze the security posture of a network
exhaustively and recommend corrective measures

When an ethical hacker or licensed penetration tester agrees to conduct
penetration tests for an organization, and to probe the weaknesses of their
information systems, he or she can be open to dismissal and prosecution unless
contract terms are included to protect the individuals conducting the test. It is
vitally important that the organization and ethical hacking team have an iden-
tical understanding of what the team is authorized to do and what happens if
the team inadvertently causes some damage.

Attacking a network from the outside carries ethical and legal risk to the
tester, and remedies and protections must be spelled out in detail before the test
begins. For example, the Cyber Security Enhancement Act of 2002 indicates life
sentences for hackers who “recklessly” endanger the lives of others, and several
other U.S. statutes address cyber crime. Statute 1030, “Fraud and Related Activity
in Connection with Computers,” specifi cally states that whoever intentionally
accesses a protected computer without authorization, and as a result of such
conduct, recklessly causes damage or impairs medical treatment, can receive
a fi ne or imprisonment of fi ve to twenty years. It is vital that the tester receive
specifi c written permission to conduct the test from the most senior executive
possible. A tester should be specifi cally indemnifi ed against prosecution for
the task of testing.

For his or her protection, the ethical hacking tester should keep the following
items in mind:

 n Protect information uncovered during the penetration test — In the
course of gaining access to an organization’s networks and computing
resources, the ethical hacker will fi nd that he or she has access to sensitive
information that would be valuable to the organization’s competitors
or enemies. Therefore, this information should be protected to the
highest degree possible and not divulged to anyone, either purposely
or inadvertently.

 n Conduct business in an ethical manner — Ethical is a relative term and is
a function of a number of variables, including socio-economic background,
religion, upbringing, and so on. However, the ethical hacker should con-
duct his or her activities in a trustworthy manner that refl ects the best
interests of the organization that commissioned the penetration testing.
Similarly, the organization should treat the ethical hacker with the same
respect and ethical conduct.

c03.indd 101c03.indd 101 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

102 Chapter 3 n Cloud Computing Software Security Fundamentals

 n Limitation of liability — As discussed earlier in this section, during a
penetration test, the ethical hacking team will most likely have access to
sensitive fi les and information. The ethical hacker is trained to not cause
any harm, such as modifying fi les, deleting information, and so on, in the
course of his or her activities; but because errors do occur, the organiza-
tion and the ethical hacker should have terms in the contract between
them that address the situation where harm is done inadvertently. There
should be a limitation to the liability of the ethical hacker if this scenario
occurs. Another commonly used option by consultants is to obtain an
insurance policy that will cover the consultant’s activities in his or her
chosen profession.

 n Remain within the scope of the assignment — The scope of the penetration
testing should be delineated beforehand and agreed upon by all parties
involved. With that accomplished, the testing team should conduct the
testing strictly within those bounds. For example, the penetration testing
should include only the networks and computing resources specifi ed, as
well as the methods and extent of trying to break in to the information
system.

 n Develop a testing plan — As with any endeavor, the ethical hacking team
should develop a test plan in advance of the testing and have it approved
by the hiring organization. The plan should include the scope of the test,
resources to be tested, support provided by the hiring organization, times
for the testing, location of the testing, the type of testing (white box, gray
box, or black box), extent of the penetration, individuals to contact in the
event of problems, and deliverables.

 n Comply with relevant laws and regulations — Business organizations are
required to comply with a variety of laws and regulations, including the
Health Insurance Portability and Accountability Act (HIPAA), Sarbanes-
Oxley, and the Gramm-Leach-Bliley Act (GLBA). These acts are one of the
reasons why companies hire ethical hackers, and demonstrate that they
are acting to protect their information resources.

The Open-Source Security Testing Methodology Manual, OSS OSSTMM 2.2,
(http://isecom.securenetltd.com/osstmm.en.2.2.pdf), also provides rules
of engagement for ethical practices in a number of areas, including penetration
testing. The following list summarizes some of the pertinent rules from the
OSSTMM 2.2:

 n Testing of very insecure systems and installations is not to be performed
until appropriate remediation measures have been taken.

 n The auditor is required to ensure nondisclosure of client proprietary
information.

c03.indd 102c03.indd 102 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 103

 n Contracts should limit the liability of the auditor.

 n The engagement contract should provide permissions for the specifi c
types of tests to be performed.

 n The scope of the testing effort should be clearly defi ned.

 n The auditor must operate legally.

 n In reporting test results, the auditor must respect the privacy of all
concerned.

The Three Pre-Test Phases

Penetration testing is usually initiated with reconnaissance, which comprises
three pre-test phases: footprinting, scanning, and enumerating. These pre-test
phases are very important and can make the difference between a successful
penetration test that provides a complete picture of the target’s network and an
unsuccessful test that does not.

The reconnaissance process seeks to gather as much information about the
target network as possible, using the following seven steps during the footprint-
ing, scanning, and enumerating activities:

 1. Gather initial information.

 2. Determine the network range.

 3. Identify active machines.

 4. Discover open ports and access points (APs).

 5. Fingerprint the operating system.

 6. Uncover services on ports.

 7. Map the network.

Footprinting

Footprinting is obtaining information concerning the security profi le of an
organization. It involves gathering data to create a blueprint of the organization’s
networks and systems. It is an important way for an attacker to gain information
about an organization without the organization’s knowledge.

Footprinting employs the fi rst two steps of reconnaissance, gathering the
initial target information and determining the network range of the target. It
may also require manual research, such as studying the company’s Web page
for useful information such as the following:

 n Company contact names, phone numbers, and e-mail addresses

 n Company locations and branches

c03.indd 103c03.indd 103 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

104 Chapter 3 n Cloud Computing Software Security Fundamentals

 n Other companies with which the target company partners or deals

 n News, such as mergers or acquisitions

 n Links to other company-related sites

 n Company privacy policies, which may help identify the types of security
mechanisms in place

Other resources that may have information about the target company
include the following:

 n The U.S. Securities and Exchange Commission (SEC) EDGAR database,
if the company is publicly traded

 n Job boards, either internal to the company or external sites

 n Disgruntled employee blogs

 n The target organization’s website and other related websites

 n Business social networking websites such as LinkedIn

 n Personal/business websites such as Facebook

 n Trade press

Scanning

The next four steps of gathering information — identifying active machines,
discovering open ports and access points, fi ngerprinting the operating system,
and uncovering services on ports — are considered part of the scanning phase.
The goal in this step is to discover open ports and applications by performing
external or internal network scanning, pinging machines, determining network
ranges, and scanning the ports of individual systems. (Scanning is discussed
in more detail later in this chapter.)

Enumerating

The last step in reconnaissance, mapping the network, is the result of the scan-
ning phase and leads to the enumerating phase. As the fi nal pre-test phase, the
goal of enumeration is to paint a fairly complete picture of the target.

To enumerate a target, a tester tries to identify valid user accounts or poorly
protected resource elements by using directed queries and active connections
to and from the target. The type of information sought by testers during the
enumeration phase can be names of users and groups, network resources and
shares, and applications.

The techniques used for enumerating include the following:

 n Obtaining Active Directory information and identifying vulnerable user
accounts

 n Discovering the NetBIOS name with NBTscan

c03.indd 104c03.indd 104 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 105

 n Using the SNMPutil command-line utility for Simple Network Management
Protocol (SNMP)

 n Employing Windows DNS queries

 n Establishing null sessions and connections

Penetration Testing Tools and Techniques

A variety of tools and techniques, including some used by malicious hackers, can
be valuable in conducting penetration tests on cloud systems. Some tools, such
as Whois and Nslookup, are public software that can help gather information
about the target network. Whois is usually the fi rst stop in reconnaissance. With
it, you can fi nd information such as the domain’s registrant, its administrative
and technical contacts, and a listing of their domain servers. Nslookup enables
you to query Internet domain name servers. It displays information that can be
used to diagnose Domain Name System (DNS) infrastructure and fi nd additional
IP addresses. It can also use the MX record to reveal the IP of the mail server.

Another information source is American Registry of Internet Numbers (ARIN).
ARIN enables you to search the Whois database for a network’s autonomous
system numbers (ASNs), network-related handles, and other related point-of-
contact information. ARIN’s Whois function enables you to query the IP address
to fi nd information on the target’s use of subnet addressing.

The common traceroute utility is also useful. Traceroute works by exploiting a
feature of the Internet Protocol called time-to-live (TTL). It reveals the path that IP
packets travel between two systems by sending out consecutive User Datagram
Protocol (UDP) packets with ever-increasing TTLs. As each router processes an
IP packet, it decrements the TTL. When the TTL reaches zero, the router sends
back a “TTL exceeded” Internet Control Message Protocol (ICMP) message to
the origin. Thus, routers with DNS entries reveal their names, network affi lia-
tions, and geographic locations.

A utility called Visual Trace by McAfee displays the traceroute output visually
in map view, node view, or IP view. Additional useful Windows-based tools for
gathering information include the following:

 n VisualRoute — VisualRoute by VisualWare includes integrated tracer-
oute, ping tests, and reverse DNS and Whois lookups. It also displays
the actual route of connections and IP address locations on a global map.

 n SmartWhois — Like Whois, SmartWhois by TamoSoft obtains compre-
hensive info about the target: IP address; hostname or domain, includ-
ing country, state or province; city; name of the network provider;
administrator; and technical support contact information. Unlike Whois
utilities, SmartWhois can fi nd the information about a computer located
in any part of the world, intelligently querying the right database and
delivering all the related records within a few seconds.

c03.indd 105c03.indd 105 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

106 Chapter 3 n Cloud Computing Software Security Fundamentals

 n Sam Spade — This freeware tool, primarily used to track down spam-
mers, can also be used to provide information about a target. It comes with
a host of useful network tools, including ping, Nslookup, Whois, IP block
Whois, dig, traceroute, fi nger, SMTP, VRFY, Web browser, keep-alive, DNS
zone transfer, SMTP relay check, and more.

Port Scanners

Port scanning is one of the most common reconnaissance techniques used by
testers to discover the vulnerabilities in the services listening to well-known
ports. Once you’ve identifi ed the IP address of a target through footprinting, you
can begin the process of port scanning: looking for holes in the system through
which you — or a malicious intruder — can gain access. A typical system has
216 –1 port numbers, each with its own Transmission Control Protocol (TCP) and
UDP port that can be used to gain access, if unprotected.

NMap, the most popular port scanner for Linux, is also available for Windows.
NMap can scan a system in a variety of stealth modes, depending upon how
undetectable you want to be. NMap can determine a wealth of information
about a target, including what hosts are available, what services are offered,
and what OS is running.

Other port-scanning tools for Linux systems include SATAN, NSAT, VeteScan,
SARA, PortScanner, Network Superscanner, CGI Port Scanner, and CGI Sonar.

Vulnerability Scanners

Nessus, a popular open-source tool, is an extremely powerful network
scanner that can be confi gured to run a variety of scans. While a Windows
graphical front end is available, the core Nessus product requires Linux to run.

Microsoft’s Baseline Security Analyzer (MBSA) is a free Windows vulner-
ability scanner. MBSA can be used to detect security confi guration errors on
local computers or on computers across a network. It does have some issues with
Windows Update, however, and can’t always tell if a patch has been installed.

Popular commercial vulnerability scanners include Retina Network Security
Scanner, which runs on Windows, and SAINT, which runs on several Unix/
Linux variants, including Mac OS X.

Password Crackers

Password cracking doesn’t have to involve fancy tools, but it is a fairly tedious
process. If the target doesn’t lock you out after a specifi c number of tries, you
can spend an infi nite amount of time trying every combination of alphanumeric
characters. It’s just a question of time and bandwidth before you break into the
system.

The most common passwords found are password, root, administrator, admin,
operator, demo, test, webmaster, backup, guest, trial, member, private, beta,
[company_name], or [known_username].

c03.indd 106c03.indd 106 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 107

Three basic types of password cracking methods can be automated with tools:

 n Dictionary — A fi le of words is run against user accounts. If the password
is a simple word, it can be found fairly quickly.

 n Hybrid — A hybrid attack works like a dictionary attack, but adds simple
numbers or symbols to the fi le of words. This attack exploits a weakness
of many passwords: they are common words with numbers or symbols
tacked on the end.

 n Brute force — The most time-consuming but comprehensive way to crack
a password. Every combination of character is tried until the password
is broken.

Some common Web password-cracking tools are:
 n Brutus — Brutus is a password-cracking tool that can perform both dic-
tionary attacks and brute-force attacks whereby passwords are randomly
generated from a given character. It can crack the multiple authentication
types, HTTP (basic authentication, HTML form/CGI), POP3, FTP, SMB,
and Telnet.

 n WebCracker — WebCracker is a simple tool that takes text lists of user-
names and passwords, and uses them as dictionaries to implement basic
password guessing.

 n ObiWan — ObiWan is a Web password-cracking tool that can work
through a proxy. Using word lists, it alternates numeric or alphanumeric
characters with roman characters to generate possible passwords.

 n Burp Intruder — Burp Intruder is a Web application security tool that can
be used to confi gure and automate attacks. It can be used to test for Web
application vulnerabilities to such attacks as buffer overfl ow, SQL injection,
path traversal, and cross-site scripting.

 n Burp Repeater — Burp Repeater is a manual tool that can be used to
attack Web applications. It operates by supporting the reissuing of HTTP
requests from the same window. It also provides a graphical environment
to support the manual Web application testing procedures, and comple-
ments other tools such as Burp Intruder.

Trojan Horses

A Trojan horse is a program that performs unknown and unwanted functions.
It can take one or more of the following forms:

 n An unauthorized program contained within a legitimate program
 n A legitimate program that has been altered by the placement of unauthor-
ized code within it

 n Any program that appears to perform a desirable and necessary function
but does something unintended

c03.indd 107c03.indd 107 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

108 Chapter 3 n Cloud Computing Software Security Fundamentals

Trojan horses can be transmitted to the computer in several ways — through
e-mail attachments, freeware, physical installation, ICQ/IRC chat, phony pro-
grams, or infected websites. When the user signs on and goes online, the Trojan
horse is activated and the attacker gains access to the system.

Unlike a worm, a Trojan horse doesn’t typically self-replicate. The exact type
of attack depends on the type of Trojan horse, which can be any of the following:

 n Remote access Trojan horses

 n Keystroke loggers or password-sending Trojan horses

 n Software detection killers

 n Purely destructive or denial-of-service Trojan horses

The list of Trojan horses in the wild is expanding quickly, but a few of the
earliest have remained relevant since the beginning, and many of these serve
as platforms for the development of more lethal variations.

Back Orifi ce 2000, known as BO2K, is the grandfather of Trojan horses and
has spawned a considerable number of imitators. Once installed on a target
PC or server machine, BO2K gives the attacker complete control of the victim.

BO2K has stealth capabilities, will not show up on the task list, and runs
completely in hidden mode. Back Orifi ce and its variants have been credited
with the highest number of infestations of Windows systems.

Another Trojan horse that has been around for a considerable time is SubSeven,
although it is becoming less and less of a problem. SubSeven is a back-door
program that enables others to gain full access to Windows systems through
the network.

Other common Trojans and spyware currently in the wild include Rovbin,
Canary, Remacc.RCPro, Jgidol, IRC.mimic, and NetBus. The SANS Internet
Storm Center (http://isc.sans.org/) is a good source of information on the
latest malware exploits and attack activity.

Buffer Overflows

A buffer overfl ow (or overrun) occurs when a program allocates a specifi c block
length of memory for something, but then attempts to store more data than the
block was intended to hold. This overfl owing data can overwrite memory areas
and interfere with information crucial to the normal execution of the program.
While buffer overfl ows may be a side effect of poorly written code, they can
also be triggered intentionally to create an attack.

A buffer overfl ow can allow an intruder to load a remote shell or execute
a command, enabling the attacker to gain unauthorized access or escalate
user privileges. To generate the overfl ow, the attacker must create a specifi c data
feed to induce the error, as random data will rarely produce the desired effect.

For a buffer overfl ow attack to work, the target system must fail to test the
data or stack boundaries and must also be able to execute code that resides in

c03.indd 108c03.indd 108 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 109

the data or stack segment. Once the stack is smashed, the attacker can deploy
his or her payload and take control of the attacked system.

Three common ways to test for a buffer overflow vulnerability are as
follows:

 n Look for strings declared as local variables in functions or methods, and
verify the presence of boundary checks in the source code.

 n Check for improper use of input/output or string functions.

 n Feed the application large amounts of data and check for abnormal
behavior.

Products like Immunix’s StackGuard and ProPolice employ stack-smashing
protection to detect buffer overfl ows on stack-allocated variables. Also, vulner-
ability scanners like Proventia can help protect against buffer overfl ow.

Buffer overfl ow vulnerabilities can be detected by manual auditing of the
code as well as by boundary testing. Other countermeasures include updating
C and C++ software compilers and C libraries to more secure versions, and
disabling stack execution in the program.

SQL Injection Attack

SQL injection is an example of a class of injection exploits that occur when one
scripting language is embedded inside another scripting language.

The injection targets the data residing in a database through the fi rewall in
order to alter the SQL statements and retrieve data from the database or execute
commands. It accomplishes this by modifying the parameters of a Web-based
application.

Preventing SQL injection vulnerability involves enforcing better coding
practices and database administration procedures. Here are some specifi c
steps to take:

 n Disable verbose error messages that give information to the attacker.

 n Protect the system account sa. It’s very common for the sa password to
be blank.

 n Enforce the concept of least privilege at the database connection.

 n Secure the application by auditing the source code to restrict length
of input.

Cross-Site Scripting (XSS)

Web application attacks are often successful because the attack is not noticed
immediately. One such attack exploits the cross-site scripting (XSS) vulnerabil-
ity. An XSS vulnerability is created by the failure of a Web-based application to
validate user-supplied input before returning it to the client system.

c03.indd 109c03.indd 109 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

110 Chapter 3 n Cloud Computing Software Security Fundamentals

Attackers can exploit XSS by crafting malicious URLs and tricking users into
clicking on them. These links enable the attacker’s client-side scripting language,
such as JavaScript or VBScript, to execute on the victim’s browser.

If the application accepts only expected input, then the XSS vulnerability
can be signifi cantly reduced. Many Web application vulnerabilities can be
minimized by adhering to proper design specifi cations and coding practices,
and implementing security early in the application’s development life cycle.

Another piece of advice: Don’t rely on client-side data for critical processes
during the application development process; and use an encrypted session,
such as SSL, without hidden fi elds.

Social Engineering

Social engineering describes the acquisition of sensitive information or inap-
propriate access privileges by an outsider, by manipulating people. It exploits the
human side of computing, tricking people into providing valuable information
or allowing access to that information.

Social engineering is the hardest form of attack to defend against because it
cannot be prevented with hardware or software alone. A company may have
rock-solid authentication processes, VPNs, and fi rewalls, but still be vulnerable
to attacks that exploit the human element.

Social engineering can be divided into two types: human-based, person-to-
person interaction, and computer-based interaction using software that automates
the attempt to engineer information.

Common techniques used by an intruder to gain either physical access or
system access are as follows:

 n Asserting authority or pulling rank

 n Professing to have the authority, perhaps supported with altered identi-
fi cation, to enter a facility or system

 n Attempting to intimidate an individual into providing information

 n Praising, fl attering, or sympathizing

 n Using positive reinforcement to coerce a subject into providing access or
information for system access

Some examples of successful social engineering attacks include the following:

 n E-mails to employees from a tester requesting their passwords to validate
the organizational database after a network intrusion has occurred

 n E-mails to employees from a tester requesting their passwords because
work has to be done over the weekend on the system

c03.indd 110c03.indd 110 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 111

 n An e-mail or phone call from a tester impersonating an offi cial who is
conducting an investigation for the organization and requires passwords
for the investigation

 n An improper release of medical information to individuals posing as
medical personnel and requesting data from patients’ records

 n A computer repair technician who convinces a user that the hard disk on
his or her PC is damaged and irreparable, and installs a new hard disk,
taking the old hard disk, extracting the information, and selling it to a
competitor or foreign government

The only real defense against social engineering attacks is an information
security policy that addresses such attacks and educates users about these
types of attacks.

Regression Testing
As software evolves, new features are added and existing features are modi-
fi ed. Sometimes these new features and modifi cations “break” existing func-
tionality — that is, cause accidental damage to existing software components.
According to the IEEE Software Engineering Body of Knowledge (IEEE610.12-90),
regression testing is the “selective retesting of a system or component to verify
that modifi cations have not caused unintended effects.” Regression testing can
indicate that software which previously passed the tests no longer does. The
problem code can then be identifi ed and fi xed to restore the lost functional-
ity. However, as software evolves, a fault that was previously fi xed sometimes
“reemerges.” This kind of reemergence of faults is common and occurs for a
number of reasons, including the following:

 n Poor revision control practices — The fi x was not documented properly
or the change was accidentally reversed.

 n Software brittleness — The fi x for the initial fault was too narrow in
scope. As the software ages and the code base grows larger (becoming
“legacy” software), new problems emerge relating to the initial fault
but are more diffi cult to fi x without negatively affecting other areas of
the software.

 n Repetition of mistakes — Problematic code is sometimes copied from
one area of the software to another; or when a feature is redesigned, the
same mistakes are made in the redesign that were made in the original
implementation of the feature.

c03.indd 111c03.indd 111 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

112 Chapter 3 n Cloud Computing Software Security Fundamentals

Increasing the code execution coverage of regression testing can help prevent
the reemergence of software faults. For example, regression tests could be var-
ied — such as by introducing new sample data or combining tests — to catch
problems that were missed with the existing tests. In this way, regression testing
would not only verify that previous tests still work, but also mitigate the risk of
unintended side effects caused by changes.

For greater assurance, regression testing should also be more extensive for
code surrounding vulnerability fi xes, code that may contain the same class of
vulnerability, and other high-consequence areas of the software. A regression
security test plan should be developed containing misuse/abuse cases and
attack scenarios (based in part on relevant attack patterns). Earlier test cases can
be augmented by any new abuse/misuse cases and attack scenarios suggested
by real-world attacks that have emerged since the software was last tested.

Regression testing is often performed by different stakeholders in the software
life cycle. During the coding phase, programmers run unit tests to verify that
individual units of source code are working properly. The unit is the smallest
testable part of the software, often a function or method and its encapsulated
data. Unit testing as part of a software development methodology, such as
extreme programming, typically relies upon an automated unit testing frame-
work, such as JUnit (www.junit.org). The automated unit testing framework
integrates with an IDE and enables the developer to generate a stub for a unit
test that can then be completed with sample data and additional business logic.
In test-driven development, unit code should be created for every software unit.
When a programmer follows this discipline, it can result in more confi dent cod-
ing, and enable a programmer to verify that a fault has been fi xed earlier in the
life cycle (reducing overall development costs).

At the system level, regression testing is a form of functional testing that the
software quality assurance team performs by using an automated testing suite.
Typically, if a software fault is discovered in the process of testing, it is submit-
ted to the bug-tracking system and assigned to a programmer for remediation.
Once the bug is fi xed, the software needs to be run through all the regression
test cases once again. Consequently, fi xing a bug at the quality assurance stage
is more expensive than during coding.

According to the IEEE Computer Society, testing is defi ned as “an activity
performed for evaluating product quality, and for improving it, by identifying
defects and problems. Software testing consists of the dynamic verifi cation of
the behavior of a program on a fi nite set of test cases, suitably selected from the
usually infi nite executions domain, against the expected behavior.”27

Secure software testing involves testing for quality assurance through func-
tional, white box and black box, environment, and defect testing. Penetration
tests, fuzzing, and simulation tests complemented by conducting cloud system
scans provide additional secure software test tools.

c03.indd 112c03.indd 112 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 113

Cloud Computing and Business Continuity
Planning/Disaster Recovery

Business continuity planning (BCP) and disaster recovery planning (DRP)
involve the preparation, testing, and updating of the actions required to pro-
tect critical business processes from the effects of major system and network
failures. From the cloud perspective, these important business processes are
heavily dependent on cloud-based applications and software robustness and
security. BCP comprises scoping and initiating the planning, conducting a
business impact assessment (BIA), and developing the plan. DRP includes
developing the DRP processes, testing the plan, and implementing the disaster
recovery procedures.

Designing, developing, and implementing a quality and effective BCP and DRP
is a major undertaking, involving many person-hours and, in many instances,
high hardware or software costs. These efforts and costs are worthwhile and
necessary, but they impact a large number of organizational resources. Cloud
computing offers an attractive alternative to total, in-house BCP/DRP implemen-
tations. Before exploring cloud computing solutions to BCP/DRP, it is important
to establish baseline defi nitions of key related terms.

Defi nitions
A disaster is a rapidly occurring or unstoppable event that can cause suffering,
loss of life, or damage. In many instances, the aftermath of a disaster can impact
social or natural conditions for a long period of time.

A DRP is a comprehensive statement of consistent actions to be taken before,
during, and after a disruptive event that causes a signifi cant loss of information
systems resources. The number one priority of DRP is personnel safety and
evacuation, followed by the recovery of data center operations and business
operations and processes.

Specifi c areas that can be addressed by cloud providers include the following:

 n Protecting an organization from a major computer services failure

 n Providing extended backup operations during an interruption

 n Providing the capability to implement critical processes at an alternate site

 n Guaranteeing the reliability of standby systems through testing and
simulations

 n Returning to the primary site and normal processing within a time frame
that minimizes business loss by executing rapid recovery procedures.

 n Minimizing the decision-making required by personnel during a disaster

c03.indd 113c03.indd 113 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

114 Chapter 3 n Cloud Computing Software Security Fundamentals

 n Proving an organized way to make decisions if a disruptive event occurs

 n Minimizing the risk to the organization from delays in providing service

A business continuity plan addresses the means for a business to recover from
disruptions and continue support for critical business functions. It is designed to
protect key business processes from natural or man-made failures or disasters
and the resultant loss of capital due to the unavailability of normal business
processes. A BCP includes a business impact assessment (BIA), which, in turn,
contains a vulnerability assessment.

A BIA is a process used to help business units understand the impact of a
disruptive event. A vulnerability assessment is similar to a risk assessment in
that it contains both a quantitative (fi nancial) section and a qualitative (opera-
tional) section. It differs in that it is smaller than a full risk assessment and is
focused on providing information that is used solely for the business continuity
plan or disaster recovery plan.

General Principles and Practices
Several major steps are required to produce an effective DRP and BCP. In this
section, the principles and practices behind DRB and BCP are reviewed in the
context of their ability to be provided through cloud services.

Disaster Recovery Planning

As mentioned in the preceding section, the primary objective of a disaster
recovery plan is to provide the capability to implement critical processes at an
alternate site and return to the primary site and normal processing within a
time frame that minimizes loss to the organization by executing rapid recovery
procedures. In many scenarios, the cloud platforms already in use by a customer
are extant alternate sites. Disasters primarily affect availability, which impacts
the ability of staff to access the data and systems, but it can also affect the other
two tenets, confi dentiality and integrity. In the recovery plan, a classifi cation
scheme such as the one shown in Table 3-4 can be used to classify the recovery
time-frame needs of each business function.

The DRP should address all information processing areas of the company:

 n Cloud resources being utilized

 n LANs, WANs, and servers

 n Telecommunications and data communication links

 n Workstations and workspaces

 n Applications, software, and data

c03.indd 114c03.indd 114 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 115

 n Media and records storage

 n Staff duties and production processes

Table 3-4: Recovery Time Frame Requirements Classifi cation

RATING CLASS RECOVERY TIME FRAME REQUIREMENTS

AAA Immediate recovery needed; no downtime allowed

AA Full functional recovery required within four hours

A Same-day business recovery required

B Up to 24 hours downtime acceptable

C 24 to 72 hours downtime acceptable

D Greater than 72 hours downtime acceptable

The means of obtaining backup services are important elements in the disaster
recovery plan. The typically used alternative services are as follows:

 n Mutual aid agreements — An arrangement with another company that
might have similar computing needs. The other company may have simi-
lar hardware or software confi gurations or may require the same network
data communications or Internet access.

 n Subscription services — Third-party commercial services that provide
alternate backup and processing facilities. An organization can move its
IT processing to the alternate site in the event of a disaster.

 n Multiple centers — Processing is spread over several operations centers,
creating a distributed approach to redundancy and sharing of available
resources. These multiple centers could be owned and managed by the
same organization (in-house sites) or used in conjunction with a reciprocal
agreement.

 n Service bureaus — Setting up a contract with a service bureau to fully
provide all alternate backup-processing services. The disadvantages of
this arrangement are primarily the expense and resource contention dur-
ing a large emergency.

Recovery plan maintenance techniques must be employed from the outset to
ensure that the plan remains fresh and usable. It’s important to build mainte-
nance procedures into the organization by using job descriptions that centralize
responsibility for updates. In addition, create audit procedures that can report
regularly on the state of the plan. It is important to ensure that multiple versions
of the plan don’t exist because that could create confusion during an emergency.

The Foreign Corrupt Practices Act of 1977 imposes civil and criminal penal-
ties if publicly held organizations fail to maintain adequate controls over their

c03.indd 115c03.indd 115 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

116 Chapter 3 n Cloud Computing Software Security Fundamentals

information systems. Organizations must take reasonable steps to ensure not
only the integrity of their data, but also the system controls the organization
put in place.

Disaster Recovery Plan Testing

The major reasons to test a disaster recovery plan are summarized as follows:

 n To inform management of the recovery capabilities of the enterprise

 n To verify the accuracy of the recovery procedures and identify defi ciencies

 n To prepare and train personnel to execute their emergency duties

 n To verify the processing capability of the alternate backup site or cloud
provider

Certain fundamental concepts apply to the testing procedure. Primarily, the
testing must not disrupt normal business functions, and the test should begin
with the least complex case and gradually work up to major simulations.

Management Roles

The plan should also detail the roles of senior management during and follow-
ing a disaster:

 n Remaining visible to employees and stakeholders

 n Directing, managing, and monitoring the recovery

 n Rationally amending business plans and projections

 n Clearly communicating new roles and responsibilities

 n Monitoring employee morale

 n Providing employees and family with counseling and support

 n Reestablishing accounting processes, such as payroll, benefi ts, and accounts
payable

 n Reestablishing transaction controls and approval limits

WHEN A DISASTER CAN BE DECLARED TO BE OVER

A disaster is not over until all operations have been returned to their normal
location and function. A very large window of vulnerability exists when transac-
tion processing returns from the alternate backup site to the original production
site. If cloud computing resources provide a large portion of the backup for the
organization, any possible vulnerabilities will be mitigated. The disaster can be
offi cially declared over only when all areas of the enterprise are back to normal
in their original home, and all data has been certifi ed as accurate.

c03.indd 116c03.indd 116 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 117

Business Continuity Planning

A BCP is designed to keep a business running, reduce the risk of fi nancial loss,
and enhance a company’s capability to recover promptly following a disruptive
event. The four principle components of a BCP are as follows:

 n Scope and plan initiation — Creating the scope and other elements needed
to defi ne the plan’s parameters

 n Business impact assessment (BIA) — Assisting the business units in
understanding the impact of a disruptive event. This phase includes the
execution of a vulnerability assessment.

 n Business continuity plan development — Using information collected
in the BIA to develop the actual business continuity plan. This process
includes the areas of plan implementation, plan testing, and ongoing
plan maintenance.

 n Plan approval and implementation — Obtaining the fi nal senior man-
agement sign-off, creating enterprise wide awareness of the plan, and
implementing a maintenance procedure for updating the plan as needed.

The BIA

A key element of the BCP process is conducting a BIA. The purpose of a BIA is
to create a document that outlines what impact a disruptive event would have on
the business. The impact might be fi nancial (quantitative) or operational (quali-
tative), such as the inability to respond to customer complaints. A vulnerability
assessment is often part of the BIA process. A BIA has three primary goals:

 n Criticality prioritization — Every critical business unit process must
be identifi ed and prioritized, and the impact of a disruptive event must
be evaluated.

 n Downtime estimation — The BIA is used to help estimate the maximum
tolerable downtime (MTD) that the business can withstand and still remain
viable; that is, what is the longest period of time a critical process can remain
interrupted before the company can never recover? The BIA process often
determines that this time period is much shorter than expected.

 n Resource requirements — The resource requirements for the critical pro-
cesses are also identifi ed at this time, with the most time-sensitive
processes receiving the most resource allocation.

A BIA generally involves four steps:

 1. Gathering the needed assessment materials

 2. Performing the vulnerability assessment

c03.indd 117c03.indd 117 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

118 Chapter 3 n Cloud Computing Software Security Fundamentals

 3. Analyzing the information compiled

 4. Documenting the results and presenting recommendations

The Vulnerability Assessment

The vulnerability assessment is often part of a BIA. It is similar to a risk assess-
ment but it is smaller than a full risk assessment and is focused on providing
information that is used solely for the business continuity plan or disaster
recovery plan.

The function of a vulnerability assessment is to conduct a loss impact analysis.
Because there are two parts to the assessment, a fi nancial assessment and an
operational assessment, it is necessary to defi ne loss criteria both quantitatively
and qualitatively.

Quantitative loss criteria can be defi ned as follows:

 n Incurring fi nancial losses from loss of revenue, capital expenditure, or
personal liability resolution

 n Incurring additional operational expenses due to the disruptive event

 n Incurring fi nancial loss resulting from the resolution of violating contract
agreements

 n Incurring fi nancial loss resulting from the resolution of violating regula-
tory or compliance requirements

Qualitative loss criteria can consist of the following:

 n The loss of competitive advantage or market share

 n The loss of public confi dence or credibility, or incurring public embarrassment

During the vulnerability assessment, critical support areas must be defi ned
in order to assess the impact of a disruptive event. A critical support area is
defi ned as a business unit or function that must be present to sustain continuity
of the business processes, protect life, provide safety, or avoid public relations
embarrassment.

Critical support areas could include the following:

 n Telecommunications, data communications, or information technology areas

 n Physical infrastructure or plant facilities, transportation services

 n Accounting, payroll, transaction processing, customer service, purchasing

Typical steps in performing a vulnerability assessment are as follows:

 1. List potential disruptive events (i.e., natural, technological, and man-made).

 2. Estimate the likelihood of occurrence of a disruptive event.

c03.indd 118c03.indd 118 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 119

 3. Assess the potential impact of the disruptive event on the organization
(i.e., human impact, property impact, and business impact).

 4. Assess external and internal resources required to deal with the disruptive
event.

Enterprise wide awareness of the plan is important because an organization’s
ability to recover from an event will most likely depend on the efforts of many
individuals. Employee awareness of the plan also emphasizes the organization’s
commitment to its employees. Specifi c training may be required for certain
personnel to carry out their tasks; and quality training is perceived as a benefi t,
which increases the interest and commitment of personnel in the BCP process.

Using the Cloud for BCP/DRP
Adopting a cloud strategy for BCP/DRP offers signifi cant benefi ts without large
amounts of capital and human resource investments. Effective cloud-based BCP/
DRP requires planning, preparation, and selecting the cloud provider that best
meets an organization’s needs. A critical issue is the stability and viability of
the vendor. The vendor should have the fi nancial, technical, and organizational
resources to ensure it will be around for both the short term and the long term.
In addition, in order for cloud BCP/DRP to reach its full potential, standardiza-
tion across a variety of architectures has to evolve.

Proper design of a cloud-based IT system that meets the requirements of a
BCP and DRP should include the following:

 n Secure access from remote locations

 n A distributed architecture with no single point of failure

 n Integral redundancy of applications and information

 n Geographical dispersion

Redundancy Provided by the Cloud

Cloud-based BCP and DRP eliminate the need for expensive alternative sites and
the associated hardware and software to provide redundancy. This approach
also provides for low cost and widely available, dynamically scalable, and vir-
tualized resources.

With a cloud computing paradigm, the backup infrastructure is always in
place. Thus, data access and running business applications are available on
cloud servers. Another option is to implement a hybrid cloud with collocation
of resources and services. Cloud service providers also offer organizations the

c03.indd 119c03.indd 119 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

120 Chapter 3 n Cloud Computing Software Security Fundamentals

option to control the backup process thorough the use of storage area networks
(SANs). Examples of elements that require backup are application data, media
fi les, fi les that have changed, recent documents, the operating system, and
archival fi les.

Secure Remote Access

In order for cloud-based BCP/DRP to be effective, the cloud applications and
data must be securely accessible from all parts of the globe. One solution is
for the cloud vendor to establish a global traffi c management system that pro-
vides the following customer services:

 n Meets service-level agreements for availability and performance

 n Regulates and controls traffi c among virtual machines located at multiple
data centers

 n Maximizes speed and performance by directing traffi c to the closest and
most logical cloud data center

These services have to be implemented and conducted in a secure environ-
ment to protect both the cloud consumer and cloud provider from compromises
and attacks.

Integration into Normal Business Processes

Services provided by a cloud vendor at a remote location are, in almost all cases,
isolated geographically from the customer’s facilities. The cloud enterprise is
strongly protected both physically and technically. At the consumer’s site, if cloud
processing and data storage are integrated into the daily routine of the business,
recovery from a disruptive event at the user organization can be more rapid and
involve less time and personnel. In many instances, the cloud resources will be
used in normal operations and will be available during a disruptive event at the
organization’s location without large amounts of transfer activity.

Summary

Security of cloud-based applications and data is one of the principal concerns of
cloud customers. Secure software and secure software life cycle management are
intrinsic to the protection of cloud services. The information security of cloud
systems depends on the classical principles of confi dentiality, availability, and
integrity, but applied to distributed, virtualized, and dynamic architectures.
Important secure software design and application principles include least privi-
lege, separation of duties, defense in depth, fail-safe, and open design.

c03.indd 120c03.indd 120 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 121

Secure cloud software also depends on applying software requirements engi-
neering, design principles, code practices, security policy implementation and
decomposition, and secure software testing. Valuable testing types are penetra-
tion testing, functional testing, performance testing, and vulnerability testing.

The availability of an organization’s applications and data residing on cloud
servers is a prime consideration of acquiring cloud services. Business continuity
planning and disaster recovery planning are important activities for any orga-
nization. Cloud computing can offer a low entry cost into providing redundant,
resilient, backup capabilities for an organization, and minimize interference in
business processes during and following a disruptive event.

Notes

 1. Cloud Security Alliance Guidance Version 2.1, 2009, (http://www.cloud-
securityalliance.org/guidance/csaguide.pdf).

 2. Information Assurance Technology Analysis Center (IATAC), Data and
Analysis Center for Software (DACS), Software Security Assurance, State-
of-the-Art Report (SOAR), July 31, 2007.

 3. Komaroff, M., and Baldwin, K., DoD Software Assurance Initiative, September
13, 2005 (https://acc.dau.mil/CommunityBrowser.aspx?id=25749).

 4. Goertzel, K., Winograd, T., et al., “Enhancing the Development Life Cycle
to Produce Secure Software,” Draft Version 2.0. Rome, New York: United
States Department of Defense Data and Analysis Center for Software, July
2008.

 5. Saltzer, J. H., and Schroeder, M. D., “The Protection of Information in
Computer Systems,” Fourth ACM Symposium on Operating Systems
Principles, October 1974.

 6. National Security Agency, “Information Assurance Technical Framework
(IATF),” Release 3.1, September 2002.

 7. Goertzel, K., Winograd, T., et al., “Enhancing the Development Life Cycle
to Produce Secure Software.

 8. van Lamsweerde A., Brohez, S., De Landtsheer, R., and Janssens, D., “From
System Goals to Intruder Anti-Goals: Attack Generation and Resolution
for Security Requirements Engineering,” in Proceedings of the Requirements
for High Assurance Workshop, Monterey Bay, CA, September 8, 2003,
pp. 49–56.

 9. Chung, L., “Representing and Using Nonfunctional Requirements,” Ph.D.
Thesis, Dept. of Computer Science, University of Toronto, 1993.

c03.indd 121c03.indd 121 6/24/2010 7:40:57 AM6/24/2010 7:40:57 AM

122 Chapter 3 n Cloud Computing Software Security Fundamentals

 10. Goertzel, Winograd, T., et al., “Enhancing the Development Life Cycle to
Produce Secure Software.”

 11. van Lamsweerde, Brohez, De Landtsheer, and Janssens, “From System
Goals to Intruder Anti-Goals: Attack Generation and Resolution for Security
Requirements Engineering.”

 12. Goertzel, Winograd, et al., “Enhancing the Development Life Cycle to
Produce Secure Software.”

 13. NIST FIPS Publication 200, “Minimum Security Requirements for Federal
Information and Information Systems,” March 2006.

 14. Goertzel, Winograd, et al., “Enhancing the Development Life Cycle to
Produce Secure Software.”

 15. American Institute of Certified Public Accountants (AICPA), “Accounting
for the Costs of Computer Software Developed or Obtained for Internal
Use,” AICPA Statement of Position (SOP) No. 98-1, March 1998,
www.aicpa.org.

 16. ISACA, “IS Auditing Guideline on Due Professional Care,” Information
Systems Audit and Control Association, March 1, 2008, www.isaca.org.

 17. Tassey, G., “The Economic Impacts of Inadequate Infrastructure for
Software Testing,” National Institute of Standards and Technology,
Technical Report, 2002.

 18. Sun, X., Feng, C., Shen, Y., and Lombardi, F., Protocol Conformance Testing
Using Unique Input/Output Sequences (Hackensack, NJ: World Scientific
Publishing Co., 1997).

 19. Tassey, G., “The Economic Impacts of Inadequate Infrastructure for Software
Testing.”

 20. Du, W., and Mathur, A. P., “Testing for Software Vulnerability Using
Environment Perturbation,” Proceedings of the International Conference on
Dependable Systems and Networks (DSN 2000), Workshop on Dependability
versus Malicious Faults, New York, NY, June 25–28, 2000 (Los Alamitos,
CA: IEEE Computer Society Press, 2000), pp. 603–12.

 21. Information Assurance Technology Analysis Center (IATAC)/Data and
Analysis Center for Software (DACS), “Software Security Assurance State-
of-the-Art Report (SOAR),” July 31, 2007.

 22. Goertzel, K. M., Winograd, T., et al., “Enhancing the Development Life
Cycle to Produce Secure Software.”

 23. Fink, G., and Bishop, M., “Property-Based Testing: A New Approach to
Testing for Assurance,” SIGSOFT Software Engineering Notes 22, 4 (July
1997): 74–80.

c03.indd 122c03.indd 122 6/24/2010 7:40:58 AM6/24/2010 7:40:58 AM

 Chapter 3 n Cloud Computing Software Security Fundamentals 123

 24. Whittaker, J. A., and Thompson, H. H., “Black Box Debugging,” Queue 1,
9 (December/January 2003–2004).

 25. National Institute of Standards and Technology (NIST), 1997, “Metrology
for Information Technology (IT),” www.nist.gov/itl/lab/nistirs/ir6025
.htm.

 26. Oladimeji, E. A., and Chung, L., “Analyzing Security Interoperability during
Component Integration,” in Proceedings of the 5th IEEE/ACIS International Con-
ference on Computer and Information Science and 1st IEEE/ACIS International
Workshop on Component-Based Software Engineering, Software Architecture and
Reuse (July 10–12, 2006). ICIS-COMSAR, IEEE Computer Society, Washington,
DC, pp. 121–29.

 27. Abran, A., Moore J., (executive editors), Bourque, P., Dupuis, R., and Tripp,
L. (editors), “Guide to the Software Engineering Body of Knowledge,”
IEEE Computer Society, 2004.

c03.indd 123c03.indd 123 6/24/2010 7:40:58 AM6/24/2010 7:40:58 AM

c03.indd 124c03.indd 124 6/24/2010 7:40:58 AM6/24/2010 7:40:58 AM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

