How fo Build a Successful
Application Using Agile Without
Sacrificing Dafta Management

Building The
Agile
Database

first edition

How fo Build a Successful
Application Using Agile Without
Sacrificing Dafta Management

Building The
Agile
Database

first edition
Larry Burns

Technics Publications

New Jersey

Published by:

Technics Publications, LLC
966 Woodmere Drive
Westfield, NJ 07090 U.S.A.

www.technicspub.com

Edited by Carol Lehn
Cover design by Mark Brye

All rights reserved. No part of this book may be reproduced or
transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage
and retrieval system, without written permission from the
publisher, except for the inclusion of brief quotations in a review.

The author and publisher have taken care in the preparation of
this book, but make no expressed or implied warranty of any kind
and assume no responsibility for errors or omissions. No liability
1s assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs
contained herein.

All trade and product names are trademarks, registered
trademarks, or service marks of their respective companies, and
are the property of their respective holders and should be treated
as such.

This book 1s printed on acid-free paper.

Copyright © 2011 by Larry Burns
ISBN, print ed. 978-1-9355041-5-3

First Printing 2011
Library of Congress Control Number: 2011931258

ATTENTION SCHOOLS AND BUSINESSES: Technics
Publications books are available at quantity discounts with bulk
purchase for educational, business, or sales promotional use. For
information, please email Steve Hoberman, President of Technics
Publications, at me@stevehoberman.com.

Contents at a Glance

Acknowledgements

Foreword

Read me first!

Introduction

CHAPTER 1: Taking the Business View

CHAPTER 2: Agile Explained.

CHAPTER 3: Agile Data Management

CHAPTER 4: Data Management Roles and Responsibilities

CHAPTER 5: Managing the Logical-Physical Divide

CHAPTER 6: Agile Data Design

CHAPTER 7: Agile Database Design

CHAPTER 8: Agile Modeling and Documentation

CHAPTER 9: Building the Agile Database

CHAPTER 10: Refactoring Made Easier

CHAPTER 11: Developing an Agile Attitude

CHAPTER 12: Sales Option Management Application

Afterword: Notes and Resources

Acronyms and Terms

Index

13

15

17

23

29

43

67

87

103

119

133

157

169

219

239

247

263

265

271

Contents

Acknowledgements 13
Foreword 15
Read me first! 17
Case Study: The Blue Moon Guitar Company 20
Introduction 23
CHAPTER 1: Taking the Business View 29
The Importance of Stakeholders 29
The Economics of Application Development 32
The Role of Business Data Management 35
CHAPTER 2: Agile Explained. 43
The Importance of Agility 43
Agile Development Explained 46
Implications of an Agile Approach 47
Critical Issues in Agile Development 49
A Building or a Garden? 55
Agile vs. Software Engineering 60
CHAPTER 3: Agile Data Management 67
PRISM: The 5 Principles of Data Management 67
Agile Data Management 70
What is a Database? 76

In Defense of the “Intelligent” Database 81

CHAPTER 4: Data Management Roles and Responsibilities 87

The Art of Data Management 87
The Data Manager Role 89
The Data Analyst Role 90
The Database Developer Role 90
The Database Administrator Role 91
The Data Steward Role 91
The Data Development Cycle 91
Data Managers as Intermediaries 92
Database Development Tasks 93
The Evolution of Data Management 96
CHAPTER 5: Managing the Logical-Physical Divide 103
The Object-Relational Impedance Mismatch 104
Sources of Confusion 106
The Virtual Data Layer 108
The Virtual Data Layer in Action 112
CHAPTER 6: Agile Data Design 119
The Focus of Data Design 119
The Cost of Losing Focus 120
How Much Design is “Just Enough”? 123
The Purpose of Normalization in Logical Design 126
When to do Data Design 128
CHAPTER 7: Agile Database Design 133
The Focus of Database Design 133
The Physical Design Process 136

Database Design Deliverables 142

Contents 9

How Much Should You Implement? 145
The Purpose of Normalization in Physical Design 147
When Should You Denormalize? 151
When Shouldn’t You Denormalize? 152
Normalization “After the Fact” 153
When to do Physical Design 153
Moving From the Logical to the Physical 154
CHAPTER 8: Agile Modeling and Documentation 157
What is an “Agile Model”? 157
Is the Logical Data Model an “Agile Model”? 160
Is the Physical Database Model an “Agile Model”? 164
Agile Documentation 165
CHAPTER 9: Building the Agile Database 169
Abstraction and Encapsulation 169
Cohesion and Coupling 171
Virtualizing the Database 171
Views 172
Stored Procedures 178
Fundamental Stored Procedures 185
Triggers 189
Functions 194
Work Tables and Materialized Views 201
Application Data Objects 204
Complex Datatypes 205
Standards for Database Coding 208
What Should Go Where? 211

Testing and Diagnostics

Optimizing Performance

CHAPTER 10: Refactoring Made Easier

Managing Change

Determining Where and How to Change

Refactoring the Logical Model

Refactoring the Physical Design

Refactoring the Database Schema

Refactoring the Virtual Data Layer

Refactoring Data

An Example of Multi-Level Refactoring

CHAPTER 11: Developing an Agile Attitude

The Three Agile Attitudes

Agile in the Organization

CHAPTER 12: Sales Option Management Application

Description of the Problem

Pre-Development Activities

Development Activities

Post-Development Activities

Afterword

Notes and Resources

Acronyms and Terms

Index

213
214

219
220
223
224
226
229
230
231
233

239
239
241

247
247
249
253
258
261
263
265
271

To my loving Aunt, Sarah McPherson, who inspired
in me a life-long love of books, learning and
teaching, and to the memory of my parents, Keith G.
(Bob) and Mary (Peg) Burns.

And, always, to Becky for her continual love and
support.

Acknowledgements

I would first of all like to acknowledge and thank my mentors in
the data management profession, in particular John Dart, Dave
Wells, Tim Feetham, Bill Stewart, Roger Paulsen, and Jim Bigej.
They gave me my start in this business, and guided me with their
wisdom and experience along the way.

I would like to thank my colleagues at DAMA International, in
particular Deborah Henderson of the DAMA Foundation and Mark
Moseley of the Chicago chapter of DAMA, who gave me the
opportunity to contribute to the Data Management Body of
Knowledge (DAMA-DMBOK). Also, of course, my friends and
colleagues in the Puget Sound chapter of DAMA, who have let me
bend their ears and try their patience at numerous monthly
meetings, gave me the first opportunity to explore some of the
1deas in this book, and provided me with excellent feedback.

I would like to thank all of my colleagues, especially those in the
Software Development Center and in the Data Services group. I
have learned a lot from working with all of these wonderful people,
and many of their thoughts, ideas, suggestions, and comments
have found their way into this book.

In particular, I would like to thank Bill Sheboy of the SDC, and
Bill Stewart of the Data Services group, for reviewing the
manuscript of this book and providing many excellent suggestions.

To the extent that I took their advice, this 1s now a much better
book.

I would like to thank Steve Hoberman of Technics Publications for
shepherding the manuscript through its various revisions, and
helping it see the light of day. His advice was invaluable, and this
project would not have seen completion without his guidance.

13

14 Building the Agile Database

Last but not least, I would like to thank my long-suffering wife
Becky who, at many points in the creation of this book, probably
wished she had married a long-haul truck driver. Thanks,
sweetheart!

Foreword

I have often wondered how two of the hottest trends in information
systems — Agile development and data governance — can coexist
and reconcile their differences. In my consulting work, I typically
see three scenarios: Agile development supersedes data resource
management, data management limits agility, or two groups work
at cross-purposes with a high degree of conflict.

Building the Agile Database is an unprecedented and much needed
book that describes a very pragmatic approach to resolving tension
that 1s common between application development and enterprise
data management. From the developer perspective, it seems that
data management creates barriers to fast and adaptive
development. From the data management point-of-view, Agile
development appears to ignore or discard many of the best
practices of data asset management. The conflict is driven by
different motivations — developers driven by a short-term need for
functionality, and data managers motivated by a long-term need
for high-quality business data.

This isn’t a new problem; it has been with us for decades. The very
same dilemma existed back when I was an application developer in
the 1980’s and 90’s. Agile methods didn’t exist, and we practiced
something called Rapid Application Development (RAD). The
premise with RAD was that we could quickly prototype functions
when working with a stable data model. In other words, we could
be fast once the hard work of database design was finished.

Today the approach is agile development, with development cycles
much faster than those of RAD. Business cycles are faster and
urgency greater, making agile development an imperative. At the
same time, the stakes are raised for data management. Regulatory
compliance and business analytics are among the factors that
make data quality, continuity, and cohesion critical; and the
variety of data and database models is much more extensive —
relational, dimensional, columnar, unstructured, and so on. We

15

16 Building the Agile Database

have the same developer-database dilemma in a faster-moving and
more complex environment.

Fortunately, Larry Burns answers some of the hard questions that
must be tackled to resolve the conflict. Larry begins by making
data administrators and database administrators “Agile aware”
with understanding of the what and why of agile development.
Next, he describes the principles of data management that are in
apparent conflict with agile: Performance, Reusability, Integrity,
Security, and Maintainability (PRISM). Now, with the stage set,
Larry describes several concepts and techniques for design of agile
databases. Many of the techniques may be familiar — abstraction,
virtualization, and normalization, for example. New insight is in
the application of the techniques and their implications for agility.

When I first met Larry Burns, he was an application developer at
the University of Washington. Today he is a data management
professional with more than a decade of experience. Larry is the
right person to author a book of this kind. He has walked both
sides of the street; he sees the conflict from both perspectives; and
he offers pragmatic solutions born of experience as a practitioner
in the field.

Building the Agile Database doesn’t have all of the answers, but it
makes big steps in the right direction. Every database
administrator, every application developer, and every information
systems manager will learn from this book.

Thanks, Larry, for stepping up to this long-standing problem.

Dave Wells
Information Management Consultant and Mentor

Read me first!

This book is meant for a broad audience that includes all of the
application development stakeholders whose roles are explained in
Chapter 1: application developers, database developers, database
administrators (DBAs), data managers, data analysts, Quality
Assurance (QA) managers, QA testers, project managers, business
managers, enterprise architects, operations managers, and
application support managers.

The early chapters of the book will focus on general, business-
oriented principles that will help all stakeholders understand the
roles and needs of the other groups, and explain how they can
work together effectively, in the context of Agile development. The
middle chapters explore the book’s central theme of separating the
work of data design (the logical, or business requirements view of
data) from the work of database design (the physical, or
implementation-specific view of data), and introduce the important
concept of data virtualization. The final chapters show how these
principles can be practically applied to Agile database
development, and will be of interest primarily to application
developers, database developers, and DBAs. The book concludes
with a section explaining how to develop an “Agile Attitude” that
helps people on Agile development teams work together more
effectively. Everyone involved in the process of application
software development will find something of value in this book!

The following outline briefly describes each chapter’s content:

e Chapter 1: Taking the Business View. This chapter
explains the 1importance of taking a business-focused,
stakeholder-oriented view of application development,
summarizes the economics of application development, and
explains the importance of data — and of good data
management practices — to the enterprise. This chapter should
be read by all readers, as it provides much of the justification
for the approach this book recommends.

17

18 Building the Agile Database

Chapter 2: Agile Explained. Explains how Agile has
transformed software development, examines the implications
of an Agile approach, and explores some of the critical issues in
Agile Development. Data management professionals will want
to be sure to read this chapter, as it describes the justification
for an Agile approach. Even Agile practitioners will want to
read this chapter, since it explains the difficulty that people in
some roles will have in adapting their processes to an Agile
model.

Chapter 3: Agile Data Management. In this chapter, an
Agile approach to data management is described, based on the
five PRISM principles. Different ways of looking at what a
database is are examined, and a defense of the “intelligent”
database is proposed. The information in this chapter is central
to the book, and should be read by everybody.

Chapter 4: Data Management Roles and
Responsibilities. Describes the roles and responsibilities of
data management professionals in application development,
enterprise data management, and operational support;
explains how these roles are evolving, and describes how their
work is affected by an Agile approach. The information in this
chapter is essential to understanding data management work,
and should be read by everybody.

Chapter 5: Managing the Logical-Physical Divide.
Examines the root cause of what Agile practitioners call the
“object-relational 1impedance mismatch”, the disconnect
between the logical (requirements) and physical
(implementation) views of data. The consequences of confusing
these two views of data are explored, and the central concept of
the Virtual Data Layer is introduced and explained. At this
point, the focus of the book shifts to material that will be
mostly of interest to application developers, data analysts, and
DBAs, although I would recommend that project managers,

Read me first!

application architects, and data managers read and understand
this chapter as well.

Chapter 6: Agile Data Design. Explores the logical side of
the data divide to determine how best to do requirements
modeling in the context of an Agile project. Since Agile
emphasizes a minimum of design work, how and when can data
modeling be done? The role of normalization in logical data
modeling is explained. The material in this chapter will be of
great value to data analysts, and to anyone involved in
understanding and modeling data requirements for an
application or business process.

Chapter 7: Agile Database Design. Explores the physical
side of the data divide to determine how best to do database
design and implementation in the highly-iterative context of an
Agile project. The role of normalization in physical database
design is explained. This material will be of value to DBAs,
application database developers, and anyone involved in
designing and creating data structures for applications.

Chapter 8: Agile Modeling and Documentation. Examines
the concept of an “Agile Model” to determine how much — and
what kind — of documentation can and should be produced from
the logical and physical data activities. Agile developers, data
analysts, DBAs, Scrum Masters and project managers will find
this chapter useful.

Chapter 9: Building the Agile Database. Examines
different approaches to data virtualization, both relational and
object-oriented and describes how to implement data
requirements in the database. This chapter will be of value
primarily to DBAs and application developers.

Chapter 10: Refactoring Made Easier. Explains the Agile
concept of refactoring, and how refactoring is applied to the
logical model, physical database design, database schema,

19

20 Building the Agile Database

virtual data layer, and data. The emphasis is on minimizing
costly refactorings at the database schema level. This chapter
will be of value primarily to DBAs and application developers,
but will also be of interest to QA (Quality Assurance) and
Application Support people.

e Chapter 11: Developing an Agile Attitude. The biggest
determinant for the success of an Agile project is the attitude of
the people involved. Each person must make an effort to
understand the roles of everyone involved, what they
contribute to the effort, and what they need to be successful.
Then, everyone must commit themselves to the success of the
undertaking. The three Agile attitudes of commitment,
cooperation, and communication are explained. This chapter
should be read and understood by anyone involved in an Agile
project — or in any other sort of application development effort.

e Chapter 12: Case Study — A Sales Option Management
Application. This case study describes how Agile principles
were applied in the development of an application that
maintains sales option data for a manufacturing company. The
case study i1s not intended to describe how Agile ought to be
practiced, but to illustrate how data management can be done
in the context of an Agile project, and how Agile projects can be
done in the context of well-defined project management
processes and stakeholder groups. This chapter is essential to
the book, and should be read by everybody.

Case Study: The Blue Moon Guitar Company

To illustrate the application of the concepts in this book, I've
created a fictional company called “Blue Moon Guitar Company”.
The company designs and builds custom guitars and other wooden
stringed instruments to order; that is, it does not mass-
manufacture instruments. When ordering an instrument, the
customer can specify a number of customization options, such as
size, finish, type of tuning pegs and bridge, pick guard design, size
and location of the sound hole, type(s) of wood used, type and

Read me first! 21

placement of electronics (if any), and so on. Each model of
instrument 1s associated with a set of these customization options,
and each option specified contributes to the total list price of the
instrument.

The Sales Option Management (SOM) application will enable the
company to input and manage these options, and their relationship
to the models of instruments offered by the company. The
application will also enable Blue Moon’s sales representatives to
help customers design their dream instrument, and give them an
accurate price quote when all of the options have been chosen.

Introduction

In the decade or so that I've spent working in the field of data
management (after many years as an application developer), I've
experienced first-hand the challenges of implementing effective
data management processes in the context of a fast-moving IT
organization at a large global Fortune 500 company.

Most of the existing literature on application development,
including much of what you’ll read in the online developer forums,
highlights the difficulty of getting application developers and data
managers to work together effectively, especially in the context of
Agile development. In many large organizations, there is often a
considerable amount of contention between application developers,
who need to get their applications written and deployed as quickly
as possible, and data managers, enterprise architects, and other
“big picture” folks, who are trying to focus on the long-term needs
of the business. Although Agile development methodologies have
been around for a decade, we seem to be no closer to resolving this
contention. In fact, the rift between the two groups has become so
wide at some companies, developers are advocating doing away
with databases altogether!

In this book, I intend to demonstrate, in a practical way, how
application developers and database developers can work together
to satisfy both application (functional) requirements and larger-
scale business data requirements. My complaint about much of the
current Agile literature is that it is written solely from the point of
view of Agile developers committed to the cause of Agile
Development. There is no explanation, for non-Agile people, of why
Agile is an important, even crucial, methodology (and not just the
application methodology du jour). Nor is there any explanation, or
exploration, of the roles and needs of other stakeholders in the
application development effort.

Instead of exploring alternative approaches that would enable all
stakeholders to do what they feel they need to do, most of the
literature on Agile Development simply says, “The Agile approach

23

24 Building the Agile Database

1s the correct one, and everyone else will have to accept it and

>

change.” In this book, I hope to educate both application
developers and data professionals about how to approach Agile

projects in a way that meets the needs of the entire organization.

Everybody involved in an application development effort, including
business users, project managers, QA testers, DBAs, and
developers, is a stakeholder in the outcome, with legitimate
interests and needs. To create an effective application development
strategy, it is essential to understand what each of these groups
brings to the table, and what each of them needs in order to do
their jobs effectively. Each group has to learn as much as possible
about what the other group is trying to do, and why, and then
commit themselves to working together in a positive and
professional manner, putting aside preconceived ideas and
personal antagonisms in pursuit of the common enterprise goal.

In addition to taking a more inclusive approach to this topic, I also
want to define an approach that is more business-focused. Both
application developers and data managers need to understand that
it’s not their money that is being spent and that, personal interests
aside, the important goal is to satisfy both the short-term and
long-term needs of the business. This requires a complete
understanding of the economics of application development, the
trade-offs involved in various development approaches, and a
commitment to achieving the maximum ROI (Return On
Investment) from each project.

I also believe that in any effective approach, the less prescription,
the better. Instead of telling people, “This is what you must do,
and this is how to do it!”, it is better to simply establish some
fundamental goals and principles, and let people chart their own
course. This 1s why, for example, I won’t be writing anything about
the “rules” of normalization (normally de rigueur for a book of this
type). Instead, I'll talk about what normalization is, how it works
(in both the logical and physical realms), and what the trade-offs
are in the context of various types of data structures. The rest is
up to you.

Introduction 25

I'm also going to try to forsake ideology for the sake of practicality.
Both developers and data managers tend to have very strong
opinions about what is the “right” thing to do, which is why
conflicts between the two groups tend to take on the tone of
religious disputes. Developers tend to be focused on ease and speed
of coding, while data managers search for the Holy Grail of “a
single source of the truth”. Reality is wusually much more
complicated than this. As we'll see, getting an application out the
door quickly may be the least cost-effective thing to do, and an
organization’s data needs may encompass several views of multiple
truths, occurring in different business contexts.

However, my major source of dissatisfaction with most of the books
I've read on the subject of application database development is
that they don’t properly address the critical distinction between
the logical and physical views of data. The common assumption is
that a (relational) database will be modeled in third-normal form,
and implemented in third-normal form; in other words, there is no
distinction made between the logical design (the data model) and
the physical schema of the database. In this book, I will show why
logical modeling and database design must be treated as two
separate activities, each with its own purpose and goals, and its
own set of rules, and how failure to do this leads to many common
database problems, including what has been referred to as the
“object-relational impedance mismatch”.

This disconnect becomes most apparent when examining the most
common approach to Agile database development — continuous
“refactoring” (reworking) of the database schema. Not only is this a
difficult, sometimes dangerous, and often unnecessary thing to do
from a database perspective, it’s also, ironically, one of the least
Agile approaches from an application development perspective! In
Agile Development projects that I personally have worked on, the
schema-refactoring approach has resulted in significant rework,
project delays, and frayed tempers in both the application and
database groups. To make matters worse, many Agile practitioners
also recommend performing “normalization after the fact”, i.e.,
starting with denormalized data structures and normalizing

26 Building the Agile Database

incrementally as needed. Unfortunately, this approach often fails
when it 1s discovered that the data needed to populate the new
normalized key attributes is missing or corrupted, due to a lack of
data integrity constraints.

An alternative approach, which I intend to advocate in this book, is
to do as much of the refactoring and denormalization as possible in
one or more virtual data layers residing above the database
schema. This approach accomplishes a number of very important
things: from a data management perspective, it helps preserve the
critical distinction between the logical (application-independent)
and physical (application-specific) views of data, enabling a single
database to support multiple applications and multiple uses of
business data. From an application development perspective, it
helps reduce the coupling that rigidly ties applications to an
unyielding and over-normalized view of the data, and enables
iterative changes to be made quickly, easily, and painlessly. This
approach, which our organization has used in a number of Agile
Development projects, has resulted in much faster development
and implementation times, less “scrap and rework”, more data and
code reuse, lower maintenance costs, and greater cooperation
between the data and development groups.

Too often, in the past, developers have said to data managers, “You
MUST DO this!”; while data managers have said to developers,
“You CAN'T DO that!”. Nothing is really going to change until both
developers and data managers understand that everybody NEEDS
TO DO certain things for certain reasons. Any methodology that
denigrates the valid business needs of people or groups who must
support it is doomed from the start.

As a database developer in good standing (I helped write the
chapters on Database Development and Database Operations
Management for DAMA International’s Data Management Body of
Knowledge [DMBOK] and frequently speak at DAMA meetings
and conferences), I am committed to an approach to data
management that helps companies maximize the business value of
their data. As a long-time application developer, I am also
committed to helping software developers create high-quality,

Introduction 27

reusable code that maximizes the return on our company’s IT
investments. I do not believe that these goals are mutually
exclusive; indeed, I don’t believe that either can be achieved
without the other. My hope is that this book will inspire a broader
vision of what both developers and data people can accomplish if
they work together.

Larry Burns
Kent, WA

CHAPTER 1
Taking the Business View

Most books on application and database development focus on IT
(Information Technology) activities: choosing the application
architecture, designing and coding the application, testing, etc.
What often gets overlooked is that all IT activities exist (or, at
least, should exist) to add value to a company’s business activities,
in pursuit of that company’s business goals. At each step in the
application development process, we need to ask ourselves: are we
doing the right thing, in the right way, to help our company
achieve its goals? Are our activities adding value to processes that
are streamlined and effective? Are the activities of critical
stakeholders in these processes being helped or hindered? An
approach that helps one set of stakeholders is ultimately valueless
if it impedes the constructive work of others, and ultimately costs
the company time, money, and opportunity.

The Importance of Stakeholders

One of the distinguishing characteristics of my approach to data
management is my insistence on a stakeholder view. Most books
on software development (especially Agile development) are
written totally from the developer’s point of view — nothing is more
important than getting software out the door on schedule. Most
books on data management are written totally from the data
management point of view — nothing is more important than “a
single view of the truth”. But in the real world, it’s not as simple as
that. All organizations and organizational processes involve a large
number of concerned stakeholders, whose interests must be
considered in any endeavor.

For companies to be successful over the long term, they must
consider the interests and well-being of their customers,
employees, and suppliers, as well as their stockholders and
directors. David R. Vincent, whose seminal work, The Information-
Based Corporation, is an excellent introduction to the concept of

29

30

Building the Agile Database

stakeholder economics, goes so far as to include communities,
competitors, and regulators in his list of stakeholders.! Failure to
consider the environmental impact of corporate activities on
surrounding communities, for example, has cost many companies
millions of dollars in lawsuits and settlements. Similarly, many
companies have lost millions of dollars fighting — and losing — anti-
trust and patent infringement suits.? Other companies have
created value for their shareholders by entering into cooperative
ventures with their competitors; a consortium of insurance
companies in Florida, for example, have pooled customer data in
order to expedite the processing of third-party and multi-party
insurance claims, resulting in benefits for both the companies and
their customers.

In the arena of software development, there are many
stakeholders at various levels who have a legitimate interest in the
outcome of the development effort. These include:

e Software developers, whose livelihoods depend on being able
to create useful software applications quickly and cost-
effectively.

e Project managers, whose jobs depend on being able to
complete projects on time and under budget.

e Business users, who want to be able to do their jobs as
effectively as possible.

e Product owners, who are responsible for making sure the
application meets the needs of the business.

1 Vincent, David R. The Information-Based Corporation: Stakeholder
Economics and the Technology Investment (Dow Jones-Irwin, 1990).

2 Microsoft, for example, paid no stockholder dividends in 2002, and its
stock lost 16% of its value, because much of their available cash was tied
up in lawsuits and settlements (Source: The Seattle Times, November 6,
2002, p. E1).

CHAPTER 1: Taking the Business View

Business analysts, who understand the needs of the
business and can communicate business requirements to
the development team in technical terms.

Business managers, who want to obtain the most value for
their IT investment.

Enterprise architects, who want to ensure the maximum
reuse of enterprise assets at the lowest possible cost.

Data managers, a subset of enterprise architects, who want
to ensure the maximum reuse of enterprise data assets at
the lowest possible cost.

Data analysts, who are responsible for determining and
documenting (modeling) business data requirements.

Database developers, who must design and build databases
(and other data structures) that satisfy both business and
application requirements.

Database administrators, who must maintain the databases
(and the database software they run on), ensure that data
can be accessed quickly and easily, and safeguard data
against loss, theft, and harm.

Infrastructure administrators, including server and
network administrators, who oversee the day-to-day
maintenance, testing, installation, and operation of the
enterprise’s IT infrastructure.

Quality Assurance (QA) managers, who want to make sure
that business users get the maximum benefit from new
software with the least amount of pain and disruption to
the business.

QA Testers, whose job it is to make sure the software
satisfies the user requirements and provides a positive user
experience.

Operations managers, who want to make sure that the day-
to-day operations of the business run smoothly, with no (or
minimal) disruptions. They also want to make sure that

31

32 Building the Agile Database

business operations can be quickly and effectively restored
if a disruption occurs.

e Application Support managers, who are responsible for both
the day-to-day support of IT applications, and for the
maintenance and enhancement that enables these
applications to maintain their value for the organization
over time.

e Portfolio managers, who oversee and administer a set of
applications supporting a specific area of the business.

e Resource managers, who are responsible for allocating the
resources (people) needed for the project to succeed. Most of
these resources will be divided between several different
projects.

Each of these roles contributes some measure of value to the
application development effort, and helps ensure, to some extent,
the ultimate success of the project and its value to the business.
It’s important to understand that, while ignoring the needs of one
set of stakeholders may provide some short-term advantage to
another, the greatest long-term advantage to the enterprise is
served by creating processes that enable all stakeholders to
accomplish what they need to accomplish for the good of the
organization. Taking a stakeholder view gives all affected groups a
stake in the successful outcome of a given endeavor. Failure to do
this encourages one or more groups to back-pedal, to slow down or
obstruct the effort of others. I would argue that most of the
internal conflicts that cause IT projects to come in late and over
budget can be traced back to a failure to sufficiently consider the
interests — and enlist the support — of all the groups whose active
participation and cooperation is essential for success.

The Economics of Application Development

I also believe that application development and data management
1ssues should be looked at from a broader economic perspective.
This means taking a hard look at the economics of both application
development and data management to determine what processes

CHAPTER 1: Taking the Business View

and practices will deliver the maximum business value (ROI) for
our IT investment. While it may be true, as Scott Ambler says,
that “working software is the primary measure of progress” in an
application development effort, it is not the sole measure of value.
It may also be true, from an application development standpoint,
that “the highest priority is to satisfy the customer through early
and continuous delivery of valuable software”;* but developers,
and even end users, are not the only or even the principal
stakeholders in the development effort. After all, it’s not their
money that’s being spent! The ultimate goal of any application
development effort is not just to put functionality into the hands of
end users, but to increase the value and profitability of the
company’s activities. So, we need to look at the whole “value
equation” of application development, which includes:

e The initial cost of development.

e The incremental cost of subsequent changes and
enhancements.

e The cost of maintenance over the life of the application.

e The cost of missed opportunities if the application is not
deployed in a timely fashion, OR if it is deployed but fails to
work as required, OR if the functionality of the application
doesn’t meet current or future business needs, OR if the
time and money spent developing the application could
have been better spent on something else.

e The value returned to the company by the application.

e The value returned to the company from subsequent reuses
of the application, application components, data structures,
and/or application data.

3 Ambler, Scott W. Agile Database Techniques (Wiley Publishing, Inc.,
2003), p. 9.

4 Ambler, op. cit.

33

34 Building the Agile Database

e The value returned to the company from subsequent reuses
of any design artifacts, such as an architecture model,
logical data model, or OOA class model.

e The value returned to the company from tools, skills,
processes, methodologies, or knowledge created or acquired
in the course of the development effort.

This is not a comprehensive list, but you get the idea. The basic
objective of Agile Development, to get working applications into
the hands of business users quickly enough to take advantage of
business opportunities, is a laudable and correct one, but care
must be taken to ensure that this is done in a way that doesn’t
sacrifice the company’s long-term best interests on the altar of
short-term goals. For example, we will see later on that there is a
difference between “time to market” (the standard measure of
software project success) and “time to money”: the amount of time
it takes for new — and often bug-ridden — software to start having a
positive impact on a company’s balance sheet.

What I'm advocating, of course, is that companies take a somewhat
broader view of the application development equation than is
usually found in Agile methodologies. I'm going to try not to be too
prescriptive here, but would suggest that a more economically
viable approach to application development might include the
following:

e [Establishing a consistent architectural framework of
approved platforms, vendors, tools, processes, products, and
languages that can support current and future development
efforts across the enterprise. It 1s unnecessary (and
economically counter-productive) to adopt a different set of
architectural standards for every application or business
unit.

e (Creating a project management process to ensure steady
progress toward the project’s goals, anticipate problems,
keep the project aligned with business objectives, ensure an
adequate return on investment (ROI), and make sure that

CHAPTER 1: Taking the Business View

lessons learned from one project are used to improve the
process for future projects.

e (Creating a quality assurance process and QA team to make
sure that product quality requirements are met, that all
functional requirements have been satisfied, that user
expectations have been met, and that total cost of
ownership (TCO) is minimized.

e Formalizing an implementation/turnover process to ensure
that both end users and IT support and maintenance staff
have adequate training and documentation, and will be able
to use and support the application with a minimum of cost
and effort.

This might, at first glance, appear to be smothering the
development methodology with a lot of process, and it’s true that
taking this broader approach to application development involves
more project stakeholders and more communication (including,
probably, more formal documentation). But it needs to be
recognized that these activities involve legitimate company
stakeholders, whose interests and activities directly affect the
company’s profitability. There 1s no point to a software
development methodology that leaves critical stakeholders
dissatisfied, and ultimately costs the company money.

The Role of Business Data Management

Much has been written about the so-called “Information Economy”,
but most people do not understand the economic changes that are
driving the new economy. At the heart of these changes are two
driving forces: commoditization and globalization. Commoditization
means that everything is basically a commodity; something to be
produced as cheaply as possible, used, and then thrown away.
Traditionally, manufacturers of goods make profits by lowering
costs, creating more efficient manufacturing processes, improving
quality, or producing newer or better products. They’'ve spent most of
the last three decades reengineering their businesses to create more
efficient processes (laying off millions of employees along the way)
and moving their manufacturing plants overseas to take advantage

35

36 Building the Agile Database

of cheaper labor and production costs. Today, most manufactured
products are virtually indistinguishable from one another; any given
product, regardless of brand, is made in the same way, probably in
the same overseas factory, in the cheapest and most cost-effective
way possible. Thus, it has become very difficult, if not impossible, for
businesses to increase their profits in the traditional manner.

How then, can companies increase value for their customers (and
profits for their shareholders)? David R. Vincent makes the point
that in the new global economy, business value is created by
establishing and nurturing relationships with customers, suppliers,
and dealers. He makes the further point that the essence of effective
relationships lies in empowerment; in giving people the ability to do
more things for themselves.? For example, from the comfort and
convenience of my office, I can do all my banking, manage my
investments, schedule my travel arrangements, and buy virtually
anything anywhere in the world. Thanks to the power of the
Internet and the various software applications it supports, we are
moving from a service economy to what might be called a self-service
economy.

To quote columnist Ian Shoales, we live in a data-driven world.®
Businesses use CRM (Customer Relationship Management) software
to identify problem areas and potential new business opportunities
in their relationships with their customers; they use ERP
(Enterprise Resource Planning) software to supply up-to-date
financial information to workers at all levels of the business; they
use data mining technology to identify patterns, trends, and possible
opportunities for growth; they use intranets to improve their
relationships with their employees; and they use extranets to
improve their relationships with their suppliers and vendors. All of

5 Vincent, op. cit.

6 Jan Shoales' column “Data-Driven World” appeared monthly in
Intelligent Enterprise, a trade magazine for database programmers, from
1997 to 2005. Ian Shoales is the alter ego of writer/performer Merle
Kessler.

CHAPTER 1: Taking the Business View

these different technologies have one thing in common: they use the
power of information to empower people to create value at the lowest
possible level.

Bill Gates, in his book Business @ the Speed of Thought,” echoes this
idea of improving business processes by using information to
empower individuals, and cites several examples from his struggling
but moderately successful software company. Both Michael
Dertouzos® of MIT and Thomas Davenport? of Harvard use the
phrase “information marketplace” to describe a scenario in which
economic value is generated through the exchange of information
among individuals, much as the traditional marketplace generates
value through the exchange of goods and services. They cite
examples such as American Airline’s SABRE reservations system,
which enables travel agents to locate and book flights on any airline.
This enabled American to develop a preferred (and highly profitable)
relationship with travel agents. Now, of course, online providers
such as Expedia and Travelocity have given individual travelers the
ability to make their own travel, hotel, and rental car reservations,
bypassing the use of travel agents entirely. Vincent gives the
example of American Hospital Supply (AHS), which made its order
entry system available to its customers, allowing hospitals serviced
by AHS to order all their supplies through the AHS system. This not
only improved AHS’s relationship with its customers, but also gave
it an advantageous bargaining position with its suppliers!

7 William H. Gates III. Business @ the Speed of Thought: Using a Digital
Nervous System (New York, NY: Warner Books, 1999).

8 Michael Dertouzos. What Will Be: How the New World of Information
Will Change Our Lives (San Francisco: HarperCollins, HarperEdge,
1997).

9 Thomas Davenport and Laurence Prusak. Working Knowledge: How
Organizations Manage What They Know (Boston: Harvard Business
School Press, 1998).

37

38 Building the Agile Database

To put this another way, we are moving from an economy based on
physical value chains (e.g., from supplier to wholesaler to dealer to
customer) to one based on what Jeffrey Rayport and John J.
Sviokla have called the virtual value chain.’0 In the wvirtual
marketspace (as distinguished from a physical marketplace),
competitive advantage goes to those who can find innovative ways
to use information to deliver goods and services. Sporting goods
retailer Cabela’s, for example, automatically emails discount offers
to its customers on goods that are being closed out of inventory.
I'm constantly getting emails from Amazon.com: “Dear Mr. Burns:
People who have ordered Fundamentals of Data Analytics have
also purchased Vladimir Nabokov’s Lolita.” (Not true). (As far as I
know).

In contrast to physical value chains, which are discrete and linear,
with defined points of input and output, virtual value chains are
non-linear and virtually limitless — “a matrix of potential inputs
and outputs that can be accessed and distributed through a wide
variety of channels”.’® As Rayport and Sviokla point out, a
customer not interested in a new compact disk by the Rolling
Stones may still choose to download it from 1Tunes, listen to it on
Pandora, or sit in on a chat session with them in the Internet’s
Voodoo Lounge.!?

What fuels the information processes that make up the virtual
value chain is data. Data assets, as Vincent points out, are a
special type of circulating (as opposed to fixed) asset. But they are
very different from other types of circulating assets such as cash
and inventory. They do not disappear when consumed. They can be
reused almost indefinitely (unless they become out-of-date), and in
an almost infinite variety of ways. And, most importantly, because

10 Rayport, Jeffrey F. and John J. Sviokla. Exploiting the Virtual Value
Chain. Harvard Business Review, November-December 1995, pp. 75-85.

11 Tbid, p. 83.

12 Tbid, p. 77.

CHAPTER 1: Taking the Business View

value can be created using data assets at minimal cost, the
traditional barriers to entry and expansion for new or small
businesses are eliminated, allowing almost anyone to become an
entrepreneur.

Even for traditional businesses like the global Fortune 500
manufacturer I work for, the power of data assets can be harnessed
to reduce costs, improve quality, expand markets, and fuel
innovation. For these companies, information can contribute to
business value in the following ways.!3

e Eliminating repetitive or redundant tasks (automation)

e Enabling people to do more work, or to work more
effectively (e.g., collaboration and workflow software that
lets people work in distributed ad-hoc teams without
frequent meetings)

e Designing improved business processes (e.g., Ford was able
to shorten its design-to-market time by over a year,
enabling it to take significant market share from its chief
rival, General Motors. Also, by automating their design-to-
manufacture process, Ford’s management was able to
accept bigger design risks, enabling Ford to break from its
conservative tradition and produce car designs that had
more customer appeal)

e Enabling business to be conducted globally

13 The examples cited in this section, along with many others, can be
found in the article How Information Gives You Competitive Advantage,
by Michael E. Porter and Victor E. Millar (Harvard Business Review,
July-August 1985, pp. 149-160), the article Exploiting the Virtual Value
Chain by Jeffrey Rayport and John Sviokla (Harvard Business Review,
November-December 1995, pp. 75-85), and David R. Vincent’s book The
Information-Based Corporation: Stakeholder Economics and the
Technology Investment (Dow Jones-Irwin, 1990).

39

40 Building the Agile Database

e Reducing intermediaries (i.e., flattening hierarchies and
giving more responsibility to empowered individuals and
entrepreneurial teams)

¢ Adding intelligence to their products (e.g., PACCAR Inc can
produce trucks that can communicate their location, fuel
consumption, and status to the driver and the driver’s
dispatcher; if necessary, the driver will be directed to the
nearest service dealership, where an appointment for
service will have been automatically made)

e Lowering costs (Canon, for example, has built a low-cost
manufacturing process around an automated parts
selection and materials handling system, delivering parts
“just in time” to workers on the assembly line)

e Enhancing differentiation (American Express has developed
differentiated travel services for its corporate customers,
using information systems to search for the lowest airline
fares, hotels, and rental cars, and tracking travel expenses
for each cardholder).

The point I'm trying to make here is that, in the Information
Economy, competitive advantage is dictated by the quality and
reusability of a company’s data assets. To maximize its usefulness,
data must be managed in a way that ensures its accuracy,
timeliness, and business relevance. The data must be easily
accessible, consumable, and transformable in a variety of ways.
Imagine if, for example, the data in Cabela’s inventory system was
inaccessible to distributed applications, or if it couldn’t easily be
consumed and transformed by an email application, or if its
customers were being offered discounts on products that didn’t
exist or weren’t available (or that shouldn’t be discounted).

It is in this context, the importance of managing high-quality,
reusable, and easily consumable data assets to fuel innovative
business information processes, that the rest of the material in
this book should be considered.

CHAPTER 1: Taking the Business View 41

Key Points

e The end purpose of all IT activities (including
application development and data management) is
to add value to a company’s business activities, in
pursuit of that company’s business goals.

e All business activities should be conducted with the
broadest possible view of the stakeholders involved.
Enlisting the support of all affected stakeholders is
essential to the success of any endeavor.

e All business activities have an economic “value
equation” that determines whether the activity will
be profitable for the company. In any undertaking,
the entire value equation must be considered.

e In the new global economy, companies create value
by using the power of information to nurture
relationships, empower stakeholders, improve
products and processes, and create new markets.

e Companies rely on high-quality, reusable, and easily
consumable data assets to quickly create or modify
the information processes (the “virtual value chain”)
that enable them to be competitive in the global
marketspace.

e Proper management of business data assets is key
to a company’s success in the Information
Economy.

