Agile G!

ossary

Agile Application
Lifecycle
Management

Also called Agile ALM, Agile Application Lifecycle Management is the integrated
management platform of the entire software application lifecycle, from planning to
the final release. Key components of the platform include the ability to handle
change management, workflow, source code management, task management,
testing and bug tracking, reporting and analytics.

Agile Practices

Agile practices are procedures that are defined as being highly efficient to
productivity, and include the following practices: user stories, cross-functional
teams, unit testing, refactoring, continuous integration, multi-stage continuous
integration, planning poker, burnup charts, burndown charts.

Agile
Development

Agile development is a way of thinking about software development as expressed in
the Agile Manifesto, and acts as an “umbrella” for a group of methodologies. The
methodologies are based on process-centric and iterative development, where
requirements and solutions evolve through collaboration between self-organizing,
cross-functional teams. Agile development is a conceptual framework that promotes
evolutionary change throughout the entire life cycle of the project and represents a
new, more flexible approach to development than the traditional methods that have
previously been the norm for software development.

Agile
Development
Life Cycle

The complete software development process including Agile practices such as user
stories, cross-functional teams, unit testing, refactoring, continuous integration,
multi-stage continuous integration, planning poker, burnup charts, burndown charts.

Agile Manifesto

Principles of Agile software development: "We are uncovering better ways of
developing software by doing it and helping others do it. Through this work we have
come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left
more."




Agile Processes

A software development methodology based on process-centric and iterative
development, where requirements and solutions evolve through collaboration
between self-organizing cross-functional teams and is collectively regarded as highly
efficient to productivity. Specific processes include user stories, cross functional
teams, unit testing, refactoring, continuous integration, multi-stage continuous
integration, planning poker, burnup charts and burndown charts.

Agile Project
Management

The process of planning, organizing, and managing the necessary resources in order
to complete project goals while adhering to Agile practices.

Agile SCM Tool

Software Configuration Management tool that supports Agile Software Development
Lifecycle requirements differently than requirements involved with traditional
software development. These supported features and requirements of Agile SCM
include feature-oriented development, sandboxing with private build before check-
in, ability to revert to last good working version when integration testing fails,
staging hierarchy, ability to revert and retarget changes, refactoring support and
support for geographically distributed development.

Agile Software
Development

Agile software development is a way of thinking about software development, as
expressed in the Agile Manifesto, and acts as an “umbrella” for a group of
methodologies. The methodologies are based on process-centric and iterative
development, where requirements and solutions evolve through collaboration
between self-organizing, cross-functional teams. Agile software development is a
conceptual framework that promotes evolutionary change throughout the entire life
cycle of the project and represents a new, more flexible approach to development
than the traditional methods that have been the norm for software development.

Application
Development
Process Tools

Tools necessary to complete the application development process, such as
Application Lifecycle Management tools, Software Configuration Management tools,
Build and Release tools, security and defect tracking tools, etc.

Application Also called ALM, Application Lifecycle Management is the management platform of

Lifecycle the entire software application lifecycle, from planning to the final release. Key

Management components of the platform include the ability to handle change management,

(ALM) workflow, source code management, task management, testing and bug tracking,
reporting and analytics.

Backlog Also knows as "product backlog," the backlog is a prioritized list of user stories and

defects in order from most valuable to least valuable for a system. Backlogs include




both functional and non-functional user stories as well as technical team-generated
stories.

Branching

Branching is the duplication of objects under revision control (such as a source
code file, or a directory tree) in such a way that the newly created objects initially
have the same content as the original, but can evolve independently of the original.
Branching can take two forms, static or dynamic. In static branches, copy and label
operations are used to duplicate a given branch. The duplicate then can evolve
independently. With dynamic branches, usually implemented in streams, only the
label operation is used, to flag the point in time that a stream diverged from its
parent stream. Both branching forms support some form of merging, so that code
changes made on a branch can be re-integrated into another branch, as is typical in
parallel development processes.

Burndown Chart

Representation of the number of hours remaining for completion of a project;
usually represented in chart form with points plotted on an x and y axis that map a
downward trend of work left to do until burning down to zero.

Burnup Chart Representation of the number of stories completed; usually represented in chart
form with points plotted on an x and y axis that map an upward trend of work
completed until reaching 100%.

Change and Change and Configuration Management (also known as Software Change and

Configuration
Management

Configuration Management or SCCM) combines aspects of both change
management and configuration management to control a software development
project as it evolves through the software development process. SCCM typically
includes all technical aspects of the development process, such as version control,
branching and merging.

Additionally, SCCM includes change related activities such as issue tracking,
document tracking, and process workflows that enable development teams to
control the overall process.

Change Control

Process in which changes to a product or system are introduced in a controlled
manner with minimal disruptions to services and cost effective solutions involved in
implementing the changes.

Change
Management

Change Management enables development organizations to control, communicate
and respond more effectively to rapidly changing business demands.




Change Packages

Change Packages enable developers and managers to group file changes together
into a logical whole and enable release managers to work at the issue or task level,
while still providing developers with full access to the underlying file contents of the
Change Package. Once created, a Change Package allows users to move, copy,
modify, merge or revert the change package.

Collocation

Collocation refers to development teams located and working in the same location.
Collocation is usually applied at the cross-functional team level.

Configuration
Management

Configuration Management refers to a set of practices around storing, tracking and
releasing versions of a software product. Software products that enable
development organizations to perform these practices efficiently are also referred to
as Configuration Management systems or Configuration Management tools.
Configuration Management systems will typically provide users with a variety of
features, including but not limited to source code control, issue tracking, and change
set management.

Configuration

Management Configuration Management tools are the tools that make possible the practices
Tools around storing, tracking and releasing versions of software.

Continuous Continuous integration, one of the foundational aspects of Agile software
Integration development methodologies, is defined by Martin Fowler to be "a fully automated

and reproducible build, including testing, that runs many times a day. This allows
each developer to integrate daily, thus reducing integration problems." By getting
changes into the main line as frequently as possible, preferably daily, and by
extending the idea of a nightly build, continuous integration helps reduce
integrations problems and identify and resolve problems more quickly.

Cross-Functional
Team

Team comprised of members with all functional skills and specialties necessary to
complete a project from start to finish.

Distributed
Development

Development teams that work on the same project but are located across multiple
locations or worksites.

Enterprise Agile

The adoption of specific Agile practices in an organization that works in conjunction
with other non-Agile practices. Enterprise Agile is a highly efficient and customized

practice for large organizations that have difficulty making a complete transition to

Agile, as well as for organizations that already practice efficient development




processes.

Epic

A user story which describes a large amount of customer value and needs to be
broken down into many smaller user stories.

Feature Driven
Development

Feature Driven Development (FDD) is an Agile method for developing software
based on an iterative and incremental software development process. The main
purpose of FDD is to deliver tangible, working software repeatedly in a timely
manner.

Hybrid Processes

Development process that uses both Agile and non-Agile practices in conjunction
with each other and is proven highly effective for development teams

Inspecting and

Agile process where teams evaluate a project by looking, listening to each other’s

Adapting feedback and ultimately improving the process or changing course.

Iteration Microcosm of a traditional Systems Development Life Cycle (SDLC,) each of which
produces working software. Iterations can be as large as 3 months but are more
typically between 1 to 4 weeks. See sprint.

Kanban Methodology that comes from Lean software development and has three main
components: visual system for managing work, limits work in progress, and work is
pulled rather than pushed through the system.

Key Agile

Principles See Agile Manifesto.

Lean Software
Development

A programming concept that focuses on optimizing efficiencies for development and
minimizing waste. According to Mary Poppendieck, 10 rules of Lean programming
include: eliminate waste, minimize artifacts, satisfy all stakeholders, deliver as fast as
possible, decide as late as possible, decide as low as possible, deploy comprehensive
testing, learn by experimentation, measure business impact and optimize across
organizations.

Merging The process of incorporating branches back into the mainline.
Multi-stage Agile method allowing for a high degree of integration to occur in parallel while
Continuous vastly reducing the scope of integration problems. Multi-stage Continuous




Integration

Integration (Cl) is an expansion upon Continuous Integration, where each developer
works on his or her own task. As changes are made, Cl is done against that team's
branch. If Cl does not succeed, then that developer (possibly with help from her
teammates) fixes the branch. This way when there is a problem, only that team, not
the whole development effort is affected.

One Piece Flow

Process in which each developer or development process works on only one piece at
a time before pulling code downstream, one piece at a time, to the next process.

Pair
Programming

Process in which two developers work together at a single workstation, where one is
responsible for typing code and the other for reviewing each line of code as it is
typed in.

Parallel
Development

Parallel development occurs whenever a software development project requires
separate development efforts on related code bases. For example, when a software
product is shipped to customers, a product development team may begin working
on a new major feature release of the product, while a product maintenance team
may work on defect corrections and customer patch releases of the shipped product.
Both teams begin work from the same code base, but the code necessarily diverges.
Frequently the code bases used in parallel development efforts must be merged at
some future date, for example, to ensure that the defect corrections provided by the
product maintenance team are integrated into the major release that the product
development team is working on.

Planning Poker

A consensus-based technique for estimating; mostly used to estimate effort or
relative size of tasks in software development. Planning Poker is useful for building
team cohesion and for fostering self-organizing teams.

Product Backlog

The backlog owned by the Product Owner.

Product Owner

A role originating from Scrum, but has now been widely adopted independently of
Scrum. A product owner manages the product backlog, addresses questions that
arise during development and signs off on work results. The product owner guides
the team with what should be done and when the final product should be shipped.
The Scrum team then balances out the product owner’s decisions by deciding how
much work should be involved in an individual sprint and estimating the amount of
time necessary to complete the task.

Real World Agile

The adoption of specific Agile practices in an organization that works in conjunction




with other non-Agile practices. Real World Agile is a highly efficient and customized
practice for large organizations that have difficulty make a complete transition to
Agile as well as for organizations that already practice efficient development
processes.

Refactoring

The practice of continuously improving the usability, maintainability, and
adaptability of code without changing its behavior. Refactoring makes it much easier
to add new and unanticipated functionality. Refactoring has the disadvantage that it
takes extra effort and requires changing the code.

Release
Management

Release management comprises a broad set of activities in software development
organizations that center on ensuring that software is ready to be released to
customers.

Release Plan

A document describing scheduling, activities, resources and responsibilities related
to a particular release.

Release Process

The software release process is the final stage in a typical software development
effort, where the software product is made available for use. To ready a software
product for release, the release process must ensure that all product requirements
have been met, usually by executing test suites designed to exercise product
functionality and correcting any defects found.

SCM Software

Software Configuration Management software is a software tool that enable
organizations to perform the SCM practices of storing, tracking and releasing a
product, and typically provide users with a variety of features including source code
control, issue tracking and change set management, advanced configuration
management, change packages, process management and integrated issue tracking.

SCM Tools

Software Configuration Management tools are tools that enable organizations to
perform SCM practices and typically provide users with a variety of features,
including source code control, issue tracking and change set management, advanced
configuration management, change packages, process management and integrated
issue tracking.

Scrum

Agile development project management framework based around sprints and is
generally comprised of a Scrum Team, Product Owner and Scrum Master. The
framework of Scrum leaves most development decisions up to the self-organizing
Scrum team, where decisions are reached as a whole team.




Scrum Master

Person trained to facilitate daily Scrum meetings, remove impediments, oversee the
team’s progress through the process and track Scrum team updates.

Self-Organizing

A team, usually found in Scrum, that manages itself through various means of
communication and reoccurring structured meetings. Self organizing teams solve
development issues together as a whole and decide the best solution depending on
the various team members.

Software Change
and
Configuration

Software change and configuration management (SCCM) combines aspects of
both change management and configuration management to control a software
development project as it evolves through the software development process. SCCM

Management typically includes all technical aspects of the development process, such as version

(SCCM) control, branching and merging.
Additionally, SCCM includes change related activities such as issue tracking,
document tracking, and process workflows that enable development teams to
control the overall process.

Software Software Configuration Management (SCM) refers to a set of practices around

Configuration

storing, tracking and releasing versions of a software product. Software products

Management that enable development organizations to perform these practices efficiently are

(SCM) also referred to as Software Configuration Management systems or Software
Configuration Management tools. Software Configuration Management systems will
typically provide users with a variety of features, including but not limited to: source
code control, issue tracking and change set management.

Software Development of software in a planned and structured process. See software

Development

development process.

Software
Development
Process

The software development process is the set of coordinated activities performed by
engineers, managers and technical writers resulting in the creation of a software
product. Various named software development processes are in use today, including
Agile, XP, Scrum, Waterfall and Lean.

Source Code
Control

Source code control is a common requirement in all modern software development
projects that provides mechanisms for checking source code in and out of a central
repository. This allows different developers to work on the same project, with
reduced fears of lost code or overwritten changes. Source code control also implies a
version control system that can manage files through the development lifecycle,
keeping track of which changes were made, who made them, when they were made,




and why. Finally, source code control also frequently involves the ability to group
versioned files as a single release, maintain multiple active releases concurrently
(branching), and join different releases (merging).

Source Code
Management

Source code management refers broadly to the set of operations required to store,
retrieve and version the files used to construct software applications. Development
teams rely on source code management to organize the source code files for
different releases of software, so that releases can be uniquely identified for testing,
packaging and delivery to customers. Failure to do this properly results in poor
quality releases and inefficient use of development resources.

Spike

Timeboxed investigation of feasibility via a bare bones implementation, which
touches on all aspects of the full implementation.

Sprint

Scrum specific word describing iterations.

Sprint Backlog

Plan for development team to map out implementation of features for an upcoming
sprint.

Sprint Planning

A meeting for Scrum Teams, Scrum Masters and Product Owners where the Product
Owner describes priority features to the team. The Scrum Team gets enough of an
understanding about the tasks discussed that they are able to choose which ones to
move from the product backlog to the sprint backlog.

Retrospective

Meeting held at the end of every sprint review to reflect on what went well during
the sprint and what can be improved upon during the next sprint. Sprint
retrospectives are valued as necessary parts of inspecting and adapting, and allow
development teams to plan for future output.

Sprint Review

In the sprint review, teams go over what stories were completed during the iteration
and demonstrate those stories for stakeholders and the product owner.

Stand-up

Daily Meetings that are meant to quickly and efficiently resolve obstacles that any
team members may be experiencing.

Story Points

Relative scale of effort required by a team to implement a user story.

Task Board

A physical or electronic board representing the state of tasks in a current sprint,




often divided into "to do," "in progress" and "done."

Timeboxing The practice of constraining the amount of time for performing any activity.
Examples include iterations, spikes and stand up meetings.
Unit Testing Tests that exercise small amounts of isolated functionality.

User Stories

Used with Agile methodologies for specifying requirements and presented as an
informal statement of the requirement (usually fitting on a 3x5 index card).

Velocity The velocity of a team is the number of story points associated with stories that are
finished over a given period of time, often 1 to 4 weeks. For instance, if the team
completed 8 stories that were each 5 points during a four week period, then their
velocity is 40 story points every four weeks.

Waterfall Model of a software development process in which progress flows downwards

through phases of conception, initiation, analysis, design, construction, testing and
maintenance.

Whole Teams

Team comprised of members with different functional skills and specialties that
work together during all phases of development in order to complete a project from
start to finish. Also known as a cross-functional team.

XP

"Extreme Programming," one implementation of the Agile methodology that focuses
on producing the simplest coding situation for application requirements and includes
practices such as pair programming, incremental design and continuous integration.




